摘要:
Quantum circuits and associated methods use Repeat-Until-Success (RUS) circuits to perform approximate multiplication and approximate squaring of input values supplied as rotations encoded on ancilla qubits. So-called gearbox and programmable ancilla circuits are coupled to encode even or odd products of input values as a rotation of a target qubit. In other examples, quantum RUS circuits provide target qubit rotations that are associated with reciprocals using series expansion representations.
摘要:
A Probabilistic Quantum Circuit with Fallback (PQFs) is composed as a series of circuit stages that are selected to implement a target unitary. A final stage is conditioned on unsuccessful results of all the preceding stages as indicated by measurement of one or more ancillary qubits. This final stage executes a fallback circuit that enforces deterministic execution of the target unitary at a relatively high cost (mitigated by very low probability of the fallback). Specific instances of general PQF synthesis method and are disclosed with reference to the specific Clifford+T, Clifford+V and Clifford+π/12 bases. The resulting circuits have expected cost in logb(1/ε(log(log(1/ε)))+const wherein b is specific to each basis. The three specific instances of the synthesis have polynomial compilation time guarantees.
摘要:
The disclosed technology includes, among other innovations, a framework for resource efficient compilation of higher-level programs into lower-level reversible circuits. In particular embodiments, the disclosed technology reduces the memory footprint of a reversible network implemented in a quantum computer and generated from a higher-level program. Such a reduced-memory footprint is desirable in that it addresses the limited availability of qubits available in many target quantum computer architectures.
摘要:
Repeat-Until-Success (RUS) circuits are compiled in a Clifford+T basis by selecting a suitable cyclotomic integer approximation of a target rotation so that the rotation is approximated within a predetermined precision. The cyclotomic integer approximation is randomly modified until a modified value can be expanded into a single-qubit unitary matrix by solving one or more norm equations. The matrix is then expanded into a two-qubit unitary matrix of special form, which is then decomposed into an optimal two-qubit Clifford+T circuit. A two-qubit RUS circuit using a primary qubit and an ancillary qubit is then obtained based on the latter decomposition. An alternate embodiment is disclosed that keeps the total T-depth of the derived circuit small using at most 3 additional ancilla qubits. Arbitrary unitary matrices defined over the cyclotomic field of 8th roots of unity are implemented with RUS circuits.