QUANTUM ALGORITHMS FOR ARITHMETIC AND FUNCTION SYNTHESIS
    1.
    发明公开
    QUANTUM ALGORITHMS FOR ARITHMETIC AND FUNCTION SYNTHESIS 审中-公开
    QUANTENALGORITHMEN ZUR ARITHMETISCHEN UND FUNKTIONSSYNTHESE

    公开(公告)号:EP3152710A1

    公开(公告)日:2017-04-12

    申请号:EP15731171.3

    申请日:2015-06-05

    IPC分类号: G06N99/00 B82Y10/00

    摘要: Quantum circuits and associated methods use Repeat-Until-Success (RUS) circuits to perform approximate multiplication and approximate squaring of input values supplied as rotations encoded on ancilla qubits. So-called gearbox and programmable ancilla circuits are coupled to encode even or odd products of input values as a rotation of a target qubit. In other examples, quantum RUS circuits provide target qubit rotations that are associated with reciprocals using series expansion representations.

    摘要翻译: 量子电路和相关方法使用Repeat-Until-Success(RUS)电路来执行近似乘法和近似平方的输入值,这些输入值是作为在辅助量子位上编码的旋转而提供的。 所谓的变速箱和可编程辅助电路被耦合以将输入值的偶数或奇数产物编码为目标量子位的旋转。 在其他示例中,量子RUS电路提供与使用串联扩展表示的倒数相关联的目标量子位旋转。

    EFFICIENT SYNTHESIS OF PROBABILISTIC QUANTUM CIRCUITS WITH FALLBACK
    4.
    发明公开
    EFFICIENT SYNTHESIS OF PROBABILISTIC QUANTUM CIRCUITS WITH FALLBACK 有权
    具有倒退的概率量子电路的有效综合

    公开(公告)号:EP3192018A1

    公开(公告)日:2017-07-19

    申请号:EP15771828.9

    申请日:2015-09-11

    IPC分类号: G06N99/00 B82Y10/00

    摘要: A Probabilistic Quantum Circuit with Fallback (PQFs) is composed as a series of circuit stages that are selected to implement a target unitary. A final stage is conditioned on unsuccessful results of all the preceding stages as indicated by measurement of one or more ancillary qubits. This final stage executes a fallback circuit that enforces deterministic execution of the target unitary at a relatively high cost (mitigated by very low probability of the fallback). Specific instances of general PQF synthesis method and are disclosed with reference to the specific Clifford+T, Clifford+V and Clifford+π/12 bases. The resulting circuits have expected cost in logb(1/ε(log(log(1/ε)))+const wherein b is specific to each basis. The three specific instances of the synthesis have polynomial compilation time guarantees.

    摘要翻译: 具有后备的概率量子电路(PQF)由一系列电路级组成,这些级被选择用于实现目标单位。 如通过测量一个或多个辅助量子位所指示的,最后阶段以所有前面阶段的不成功结果为条件。 这个最后阶段执行一个回退电路,以相对高的成本强制执行目标幺正的确定性执行(通过非常低的回退概率来缓解)。 参考具体的Clifford + T,Clifford + V和Clifford +碱基公开了一般PQF合成方法的具体实例。 所得到的电路具有预期的成本,其中b是针对每个基准而特定的。 合成的三个特定实例具有多项式编译时间保证。

    EFFICIENT SYNTHESIS OF REPEAT-UNTIL-SUCCESS CIRCUITS IN CLIFFORD + T BASIS
    7.
    发明公开
    EFFICIENT SYNTHESIS OF REPEAT-UNTIL-SUCCESS CIRCUITS IN CLIFFORD + T BASIS 审中-公开
    CLIFFORD + T BASIC重复 - 直到成功电路的有效综合

    公开(公告)号:EP3129923A2

    公开(公告)日:2017-02-15

    申请号:EP15716361.9

    申请日:2015-04-01

    IPC分类号: G06N99/00 B82Y10/00

    摘要: Repeat-Until-Success (RUS) circuits are compiled in a Clifford+T basis by selecting a suitable cyclotomic integer approximation of a target rotation so that the rotation is approximated within a predetermined precision. The cyclotomic integer approximation is randomly modified until a modified value can be expanded into a single-qubit unitary matrix by solving one or more norm equations. The matrix is then expanded into a two-qubit unitary matrix of special form, which is then decomposed into an optimal two-qubit Clifford+T circuit. A two-qubit RUS circuit using a primary qubit and an ancillary qubit is then obtained based on the latter decomposition. An alternate embodiment is disclosed that keeps the total T-depth of the derived circuit small using at most 3 additional ancilla qubits. Arbitrary unitary matrices defined over the cyclotomic field of 8th roots of unity are implemented with RUS circuits.

    摘要翻译: 通过选择目标旋转的合适的分圆整数近似值,在Clifford + T基础上编译重复直至成功(RUS)电路,使得旋转在预定精度内近似。 随机修改分圆整数近似,直到通过求解一个或多个范数方程将修改后的值扩展成单量子位酉矩阵。 然后将矩阵展开成一个特殊形式的二比特酉矩阵,然后将其分解成最佳的二比特Clifford + T电路。 然后基于后面的分解获得使用主量子位和辅助量子位的两个量子位RUS电路。 公开了一个替代实施例,其使用至多3个附加的附属量子位来保持导出电路的总T深度较小。 在RUS电路中实现了在统一的第8根的分圆域上定义的任意酉矩阵。