摘要:
The invention relates to measuring devices used for measuring angular velocity, and more precisely, to vibrating micro-mechanical sensors of angular velocity. The sensor of angular velocity according to the invention comprises at least two seismic mass structures (1), (2), excitation structures (3), (4) and coupling seesaw type springs (6), (7). The objective of the invention is to provide an improved sensor structure, which enables reliable measuring with good efficiency particularly in small vibrating micro-mechanical angular velocity sensor solutions.
摘要:
The invention presents a spring structure (501), which has at least two masses (Ma, Mb) coupled in a first direction as opposite phase oscillators by means of springs (Sh1, Sh2) connected to them (Ma, Mb), via a loop (L, E) between said springs (Sh1, Sh2) connected to their coupling points, wherein oblique springs (Sl45, Sr45) are connected from said coupling points of the loop (L) to the anchors (A) of the base such that the longitudinal motion of the loop (L) is arranged to occur perpendicularly or substantially perpendicularly to said first direction, to thus attenuate opposite phase oscillation other than that of the masses (Ma, Mb). The invention also presents the use of a spring structure in a resonator and/or in a resonator array as well as in a sensor or a sensor comprising system.
摘要:
The invention relates to measuring devices used for measuring angular velocity, and more precisely, to vibrating micro-mechanical sensors of angular velocity. The sensor of angular velocity according to the invention comprises at least two seismic mass structures (1), (2), excitation structures (3), (4) and coupling seesaw type springs (6), (7). The objective of the invention is to provide an improved sensor structure, which enables reliable measuring with good efficiency particularly in small vibrating micro-mechanical angular velocity sensor solutions.
摘要:
The invention shows a method to control a pointing device with an angular, rate sensor, that comprises generating an ensemble of orthogonal unit vector associated signals by at least one angular rate sensor to represent angular rates in a dimensional space for each mutually orthogonal unit vector direction of said dimensional space, amplifying the at least one of said signal non-linearly for determination of cursor on a screen for (x,y) coordinates of the screen, applying a decision criterion to determine the state of the pointing device as based on said unit vector associated signals. The invention also shows a pointer utilising the method and a system comprising such a pointer.