摘要:
The present invention provides a self-supporting substrate obtained by the steps of: forming an Al-based group-III nitride thin-layer having a thickness in the range of 3-200 nm on a base substrate made of a single crystal of an inorganic substance which substantially does not decompose at 800 °C in an inert gas atmosphere and which does produce volatiles by decomposition when contacting with a reducing gas in a temperature range of 800-1600 °C, for example sapphire; forming voids along the interface between the base substrate and the Al-based group-III nitride thin-layer of the obtained laminated substrate by thermally treating the laminated substrate in a temperature range of 800-1600 °C in a reducing gas atmosphere containing ammonia gas; forming a group-III nitride single crystal thick-layer on the Al-based group-III nitride thin-layer; and separating these formed layers. The self-supporting substrate is a self-supporting substrate of the group-III nitride single crystal such as AlN, which is suitably used for forming a semiconductor device such as ultraviolet light emitting device and of which crystal plane shows a large radius of curvature.
摘要:
The present invention is a method for producing a laminated body, comprising the steps of: (1) preparing a base substrate having a surface formed of a single crystal which is different from the material constituting the Al-based group-III nitride single crystal layer to be formed; (2) forming an Al-based group-III nitride single crystal layer having a thickness of 10 nm to 1.5 µm on the single crystal surface of the prepared base substrate; (3) forming on the Al-based group-III nitride single crystal layer a non-single crystal layer being 100 times or more thicker than the Al-based group-III nitride single crystal layer without breaking the previously-obtained Al-based group-III nitride single crystal layer; and (4) removing the base substrate. The method provides a substrate which can be suitably used as a base substrate for producing an Al-based group-III nitride single crystal self-supporting substrate, of which surface is formed of a single crystal of an Al-based group-III nitride, and which is free from cracking and warpage.