Abstract:
Systems and methods for detecting and monitoring arrhythmias from a signal are provided. A signal processing system may transform a signal using a wavelet transformation and analyze changes in features of the transformed signal to detect pulse rhythm abnormalities. For example, the system may detect pulse rhythm abnormalities by analyzing energy parameters, morphology changes, and pattern changes in the scalogram of a PPG signal. Further, the system may detect pulse rhythm abnormalities by analyzing both the PPG signal and its corresponding scalogram. Physiological information, such as cardiac arrhythmia, may be derived based on the detected pulse rhythm abnormality.
Abstract:
A patient monitoring system may determine one or more reference points of a physiological signal. The system may select one or more fiducial points on the physiological signal relative to the reference points. The one or more fiducial points may be selected by selecting a point spaced by a time interval relative to one of the reference points. The time interval may be a predetermined constant, or the time interval may depend on physiological information. The system may generate a fiducial signal based on the selected fiducial points, calculate physiological information such as a respiration rate based on the selected fiducial points, or both.
Abstract:
A patient monitoring system may receive a photoplethysmograph (PPG) signal including samples of a pulse waveform. The PPG signal may demonstrate morphology changes based on respiration. The system may calculate morphology metrics from the PPG signal, the first derivative of the PPG signal, the second derivative of the PPG signal, or any combination thereof. The morphology metrics may demonstrate amplitude modulation, baseline modulation, and frequency modulation of the PPG signal that is related to respiration. Morphology metric signals generated from the morphology metrics may be used to determine respiration information such as respiration rate.
Abstract:
A patient monitoring system may determine one or more reference points of a physiological signal. The system may select one or more fiducial points on the physiological signal relative to the reference points. The one or more fiducial points may be selected by selecting a point spaced by a time interval relative to one of the reference points. The time interval may be a predetermined constant, or the time interval may depend on physiological information. The system may generate a fiducial signal based on the selected fiducial points, calculate physiological information such as a respiration rate based on the selected fiducial points, or both.