摘要:
The present invention provides a scheduler capable of maximizing aggregate throughput while achieving controlled amount of fairness among users and meeting Quality of Service (QoS) requirements. The scheduler is configured to select the next unit of data to transmit from multiple queues associated with access terminals waiting to receive the data. For each access terminal, a weighting factor is calculated based on a temporal fading factor, a throughput fairness factor, and a delay QoS factor. The unit selected for transmission corresponds to the access terminal having the greatest overall weighting factor. The process repeats for each unit being transmitted.
摘要:
The present invention provides a scheduler capable of maximizing aggregate throughput while achieving controlled amount of fairness among users and meeting Quality of Service (QoS) requirements. The scheduler is configured to select the next unit of data to transmit from multiple queues associated with access terminals waiting to receive the data. For each access terminal, a weighting factor is calculated based on a temporal fading factor, a throughput fairness factor, and a delay QoS factor. The unit selected for transmission corresponds to the access terminal having the greatest overall weighting factor. The process repeats for each unit being transmitted.
摘要:
Methods and systems are provided for allocating resources including VoIP (voice over Internet Protocol) and Non-VoIP resources. In some embodiments, multiplexing schemes are provided for use with OFDMA (orthogonal frequency division multiplexing access) systems, for example for use in transmitting VoIP traffic, in some embodiments, various HARQ (Hybrid Automatic request) techniques are provided for use with OFDMA systems. In various embodiments, there are provided methods and systems for dealing with issuea such as Handling non-full rate vocoder frames, VoIP packet jitter handling, VoIP capacity increasing schemes, persistent and non-persistent assignment of resources in OFDMA systems.