摘要:
The instant invention pertains to a method and a fluid composition for producing contact lenses with improved lens quality and with increased product yield. The method of the invention involves adding a non-crosslinkable hydrophilic polymer into a fluid composition including a lens-forming material in an amount sufficient to reduce an averaged mold separation force by at least about 40% in comparison with that without the non-crosslinkable hydrophilic polymer and to provide a disparity of about 10 N or less in mold separation force. The non-crosslinkable hydrophilic polymer has a limited miscibility with the lens-forming material low enough to successfully and timely form an intact interfacial film with a sufficient thickness at an interface between the mold and the fluid composition therein, and has a structure that minimizes entanglement of the non-crosslinkable hydrophilic polymer in the interfacial film with the polymer matrix of the formed lens.
摘要:
The invention provide a class of actinically-crosslinkable silicone-containing prepolymers obtained by functionalizing an intermediary copolymer to have two or more thiol or ethylenically-unsaturated groups covalently attached thereto, wherein the intermediary copolymer is an atom-transfer radical polymerization (ATRP) product of a reactive mixture comprising a polysiloxane ATRP macroinitiator and at least one hydrophilic vinylic monomer. The present invention is also related to silicone hydrogel contact lenses made from a prepolymer of the invention and methods for making the contact lenses in a cost-effective way and with high consistency and high fidelity to the original lens design.
摘要:
The instant invention pertains to a method and a fluid composition for producing contact lenses with improved lens quality and with increased product yield. The method of the invention involves adding a non-crosslinkable hydrophilic polymer into a fluid composition including a lens-forming material in an amount sufficient to reduce an averaged mold separation force by at least about 40% in comparison with that without the non-crosslinkable hydrophilic polymer and to provide a disparity of about 10 N or less in mold separation force. The non-crosslinkable hydrophilic polymer has a limited miscibility with the lens-forming material low enough to successfully and timely form an intact interfacial film with a sufficient thickness at an interface between the mold and the fluid composition therein, and has a structure that minimizes entanglement of the non-crosslinkable hydrophilic polymer in the interfacial film with the polymer matrix of the formed lens.