Abstract:
A ray detection system for an X/Gamma ray container/vehicle inspection device, comprising detector modules, is provided. The detector modules are arranged on a detector arm (34), and each detector module comprises one or more detector units (35) arranged in a scattered configuration, wherein each the detector unit in the detector module is installed so as to align with a beam center of a ray source (31), thereby significantly reducing the dimension of a detector frame while improving the imaging quality.
Abstract:
The present invention discloses a gantry configuration for a combined mobile radiation inspection system comprising a first arm frame, a second arm frame and a third arm frame. The first, second and third arm frames define a scanning channel to allow an inspected object to pass therethrough. The gantry configuration for the combined mobile radiation inspection system further comprises a position sensing device configured to detect a position error between the first arm frame and the second arm frame; and a controller configured to control a moving speed of at least one of the first arm frame and the second arm frame based on the detected position error, so that the position error between the first arm frame and the second arm frame is equal to zero. Compared with the prior art, the present invention is advantageous at least in that an automatic deviation correction device is provided on the gantry arm frame, and thus the position error between both side arm frames can be automatically controlled to zero, so that the gantry arm frame can be effectively prevented from being subjected to a force and deforming, and the radiation detector can receive the full ray, thereby improving the imaging quality.
Abstract:
A vehicle mounted mobile container or vehicle inspection system, including: a radiation source (4), a movable vehicle for carrying the inspection system, and a detector arm rack which has a horizontal arm (1) and a vertical arm (2), a first end of the horizontal arm is connected to the vehicle and a second end thereof is connected to an end of the vertical arm. The horizontal arm and the vertical arm are connected by a pivotal connecting device such that the vertical arm may pivot in a vertical plane, and the horizontal arm and the vertical arm may be retracted in a same horizontal plane. The novel arm rack construction may reduce the space occupied by it on top of the scanning vehicle after the arm rack is stowed so as to reduce the eight of the scanning vehicle under running condition.