摘要:
In a target detecting technique using a laser sensor, misdetection can be reduced while maintaining a wide detecting range. A target detecting method for detecting a target by emitting a laser beam diagonally downward from an installing position of a laser emitting and receiving portion. The method includes the steps of: obtaining distance information from the laser emitting and receiving portion to an object to be detected; determining, when the object to be detected approaches the laser emitting and receiving portion, whether the tracking of the object to be detected is stopped or not; and determining, when the tracking of the object to be detected is stopped, whether the object to be detected is the target or a non-target based on distance information immediately before the tracking of the object to be detected is stopped.
摘要:
A passive type moving object detection system which include an infrared detector, infrared sensors mounted on the infrared detector, a detection field including a column of detection regions for monitoring a human intruder and a row of detection regions for detecting a non-human intruder, wherein the column of detection regions have a height covering a human height, an optical system located between the infrared detector and the detection field, the infrared sensors having infrared accepting areas comprising a first section and a second section wherein the first section optically corresponds to the column of detection region and the second section optically corresponds to the row of detection region, so as to receive infrared ray radiating from a moving object passing through the detection regions, and the detector including an arithmetic circuit which makes subtraction between the peak values of signals generated by the detector, and a decision circuit whereby the balance of subtraction is compared with a reference level.
摘要:
In an embodiment, a laser area sensor of the present invention comprises: a laser range finder (110); a scanning mechanism (120) that changes a measurement direction of the laser range finder (110); a distance data acquiring portion (130) that defines a detection area and acquires distance information in each direction in the detection area in a time-series manner, by periodically causing the laser range finder (110) to perform measurement while causing the measurement direction to be changed; a human body judging portion (140) that extracts a portion that is presumed to correspond to a human body, from among the distance information and judges whether or not the extracted portion matches a human body based on a time-series moving status of the extracted portion; an alert output control portion (150); a memory (160); and a DIP switch (170).