摘要:
A method includes removing a casting shell and core from a cast component, which may be a gas turbine blade. The method further includes utilizing a focused removal technique, such as a water jet or laser drill, to remove a portion of a virtual pattern cast (VPC) shell from the cast component. The cast component is then exposed to a leaching solution and high pressure water wash to remove an internal core material and a portion of the VPC shell remainder from the cast component. The method further includes exposing the cast component to a high agitation leaching solution and to the high pressure water wash for a minimal time. An electroless nickel-boron coating is then applied to the cast component, and an electrolytic palladium coating is further applied to the cast component. The cast component is further exposed to a high agitation leaching solution for an extended period.
摘要:
In some examples, an article may include a superalloy substrate and a coating on the superalloy substrate. In accordance with this example, the coating includes a diffusion barrier layer on the substrate and a wear resistant oxide layer over the diffusion barrier layer. The diffusion barrier layer may include iridium and the wear resistant oxide layer may include at least one of silica, zirconia, or chromia.
摘要:
A nickel-based, niobium bearing superalloy consisting of 2.5 to 5 wt. % aluminum, 0.01 to 0.05 wt. % boron, 0.02 to 0.06 wt. % carbon, 6 to 15 wt. % chromium, 0 to 20 wt. % cobalt, 0 to 0.5 wt. % hafnium, 1 to 3 wt. % molybdenum, 6 to 16 wt. % niobium, 0 to 0.6 wt. % silicon, 1 to 5 wt. % tantalum, 0 to 1.5 wt. % titanium, 1 to 3 wt. % tungsten, .04 to .1 wt. % zirconium and the balance nickel and incidental impurities, the superalloy having gamma prime strengthening precipitates in a gamma matrix and little or no tertiary incoherent phases, such as delta, delta variants and eta.