An image processing apparatus and method, and an image evaluation device and method
    1.
    发明公开
    An image processing apparatus and method, and an image evaluation device and method 失效
    Bildverarbeitungsgerätund -verfahren sowie Bildauswertungsvorrichtung und -verfahren

    公开(公告)号:EP0891075A2

    公开(公告)日:1999-01-13

    申请号:EP98304509.7

    申请日:1998-06-08

    IPC分类号: H04N1/40

    摘要: In image processing according to the prior art, the important part of photographic image data (referred to herein as the object) could not be determined and therefore required human participation.
    A computer 21 which is the core of image processing calculates an edginess which is an image variation from a differential value of data for adjacent picture elements in a step SA110, and determines object picture elements by selecting only images with a large variation in steps SA120, SA130. As optimum parameters for contrast correction and lightness compensation are calculated from image data for object picture elements in steps SA310-SA330, image processing indicators based on object picture elements are determined, and optimum image processing can be performed automatically. After summing a luminance distribution for each area of the image, which is a feature amount, while uniformly selecting picture elements in a step SB110, a reevaluation is performed by a weighting determined for each area in a step SB120, and a luminance distribution strongly influenced by the luminance distribution of the photographed object is thus obtained with uniform sampling. After determining the intensity of this luminance distribution in steps SB130-SB150, the image data is converted in a step SB160, and image processing can therefore be performed with optimum intensity while reducing the processing amount.

    摘要翻译: 在根据现有技术的图像处理中,摄影图像数据(本文中称为对象)的重要部分不能被确定,因此需要人参与。 作为图像处理的核心的计算机21在步骤SA110中计算作为相邻图像元素的数据的差分值的图像变化的偏移,并且通过仅选择步骤SA120中的变化大的图像来确定对象图像元素, SA130。 根据步骤SA310-SA330中的对象图像元素的图像数据计算对比度校正和亮度补偿的最佳参数,确定基于对象图像元素的图像处理指示符,并且可以自动执行最佳图像处理。 在对作为特征量的图像的每个区域的亮度分布求和之后,在步骤SB110中均匀地选择图像元素的同时,通过对步骤SB120中的每个区域确定的加权来执行重新评估,并且强烈影响亮度分布 因此通过均匀采样获得拍摄对象的亮度分布。 在步骤SB130-SB150中确定该亮度分布的强度之后,在步骤SB160中转换图像数据,因此可以以最佳强度执行图像处理,同时减少处理量。