摘要:
Disclosed are a hydrothermally stable porous molecular sieve catalyst and a preparation method thereof. The catalyst consists of a product obtained by the evaporation of water from a raw material mixture comprising a molecular sieve having a framework of Si-OH-Al-, a water-insoluble metal salt and a phosphate compound. The catalyst maintains its physical and chemical stabilities even in an atmosphere of high temperature and humidity. Accordingly, the catalyst shows excellent catalytic activity even when it is used in a severe process environment of high temperature and humidity in heterogeneous catalytic reactions, such as various oxidation/reduction reactions, including catalytic cracking reactions, isomerization reactions, alkylation reactions and esterification reactions.
摘要:
Disclosed are a hydrothermally stable porous molecular sieve catalyst and a preparation method thereof. The catalyst consists of a product obtained by the evaporation of water from a raw material mixture comprising a molecular sieve having a framework of Si-OH-Al-, a water- insoluble metal salt and a phosphate compound. The catalyst maintains its physical and chemical stabilities even in an atmosphere of high temperature and humidity. Accordingly, the catalyst shows excellent catalytic activity even when it is used in a severe process environment of high temperature and humidity in heterogeneous catalytic reactions, such as various oxidation/reduction reactions, including catalytic cracking reactions, isomerization reactions, alkylation reactions and esterification reactions.
摘要:
Disclosed is a process for producing light olefins from hydrocarbon feedstock. The process is characterized in that a porous molecular sieve catalyst consisting of a product obtained by evaporating water from a raw material mixture comprising a molecular sieve with a framework of Si-OH-Al- groups, a water-insoluble metal salt, and a phosphate compound, is used to produce light olefins, particularly ethylene and propylene, from hydrocarbon, while maintaining excellent selectivity to light olefins. According to the process, by the use of a specific catalyst with hydrothermal stability, light olefins can be selectively produced in high yield with high selectivity from hydrocarbon feedstock, particularly full-range naphtha In particular, the process can maintain higher cracking activity than the reaction temperature required in the prior thermal cracking process for the production of light olefins, and thus, can produce light olefins with high selectivity and conversion from hydrocarbon feedstock.