Abstract:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
Abstract:
There is provided an organic electroluminescence device including an organic layer having a light emission region and being disposed between an anode and a cathode. The organic layer contains, as an organic light-emitting material, a compound represented by the following formula (1):
wherein each of R 1 to R 26 represents a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, an amino group, a cyano group, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxy group, an alkylthio group, a silyl group, an alkylsilyl group, a siloxanyl group, an aralkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an ester group, an aryloxy group, a formyl group, an alkoxycarbonyl group, and a carboxyl group, and n 1 is a numeric value from 1 to 3.
Abstract:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
Abstract:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
Abstract:
There is provided an organic electroluminescence device including an organic layer having a light emission region and being disposed between an anode and a cathode. The organic layer contains, as an organic light-emitting material, a compound represented by the following formula (1): wherein each of R 1 to R 26 represents a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, an amino group, a cyano group, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxy group, an alkylthio group, a silyl group, an alkylsilyl group, a siloxanyl group, an aralkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an ester group, an aryloxy group, a formyl group, an alkoxycarbonyl group, and a carboxyl group, and n 1 is a numeric value from 1 to 3.
Abstract translation:有机电致发光器件包括具有发光区域并且设置在阳极和阴极之间的有机层和有机发光材料。 有机电致发光器件包括具有发光区域并且设置在阳极和阴极之间的有机层和式(1)或(2)的有机发光材料。 [图像] R 1-R 26H,卤素,OH,巯基,硝基,氨基,氰基,烷基,烯基,环烷基,烷氧基,烷硫基,甲硅烷基,烷基甲硅烷基,硅氧烷基,芳烷基,芳烃,芳族杂环基,酯 ,芳氧基,甲酰基,烷氧基羰基或羧基; n 11 - 3。
Abstract:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
Abstract:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
Abstract:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
Abstract:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.