摘要:
A tool for detecting a structure in a well includes a receiver coil having a first winding and a second winding, a first circuit to apply an input signal to the second winding, and a detection circuit to detect a response of the first winding to the input signal applied to the second winding. The response of the first winding indicates presence of the structure in the well if the receiver coil is positioned proximate the structure. The depths (or locations) of these structures are used to avoid placing receivers near these structures for EM induction surveys, such as cross-well, surface-to-wellbore, or single-wellbore induction loggings with receivers in metallic casing.
摘要:
Methods and related systems are described for making measurements of an electromagnetic field in a subterranean formation that has been induced by a current loop (150, 160, 162). The current loop uses one or more steel wellbore casings as electrodes. Receiver arrays (192) are positioned either at surface/seaf loor, in the same, or in nearby wells. In the most general case, the receivers are tri-axial. A section of metallic casing in one well can be used as a current source and the electromagnetic field at surface can be measured using an array of EM receivers (192) placed at a range of distances from the wellbore.
摘要:
The present disclosure relates to systems and methods for conducting an electromagnetic borehole-to-surface survey of a formation surrounding a borehole. Such methods include deploying a dipole transmitter into the borehole to a depth of investigation, deploying an array of electromagnetic receivers outside of the wellbore, and measuring a response of the formation at the array of electromagnetic receivers deployed outside of the wellbore, for example at the surface. From the response of the formation a property of the formation can be determined based on the response of the formation measured at the array of electromagnetic receivers. For the scenario of a cased well, a local reference receiver may be added at a location proximate the borehole to measure the effective magnetic moment of the transmitter inside the casing, and normalize the formation response in order for a more accurate determination of a formation characteristic, such as resistivity. These receivers can also be used for other types of surveys.
摘要:
A tool for detecting a structure in a well includes a receiver coil having a first winding and a second winding, a first circuit to apply an input signal to the second winding, and a detection circuit to detect a response of the first winding to the input signal applied to the second winding. The response of the first winding indicates presence of the structure in the well if the receiver coil is positioned proximate the structure. The depths (or locations) of these structures are used to avoid placing receivers near these structures for EM induction surveys, such as cross-well, surface-to-wellbore, or single-wellbore induction loggings with receivers in metallic casing.
摘要:
Methods and related systems are described for making electromagnetic measurements of a subterranean rock formation (100; 700) through a conductive casing (176; 704) of a borehole. A number of transmitters/receivers (122; 126;...; 708; 710;...) are deployed into single well having a conductive casing (176; 704). A magnetic field is induced through the conductive casing (176; 704) and into a surrounding subterranean rock formation (100; 700), and the magnetic field is detected by the receivers. The receivers have main windings, feedback winding and bucking windings. One of the receiver coils in the tool string is excited at a time, and induced voltages at all of the other receiver coils, either in straight mode, or in feedback mode, are measured.
摘要:
To determine effect on a magnetic field caused by a lining structure in a wellbore, an array may be deployed into the wellbore lined with the lining structure. The array comprises a plurality of sensors including sensor A configured to operate as a transmitter, sensor B configured to operate as either a transmitter or a receiver, and sensor C configured to operate as a receiver. The array measures magnetic fields using sensor B as a receiver and sensor C in response to activation of sensor B as a transmitter and sensor A. A plurality of lining structure correction factors can be calculated based on the measured magnetic fields, based on the reciprocity of the sensors.