摘要:
Provided is an image processing apparatus that obtains an effect of improving perceived definition even when an input image signal does not include much of a high range component. The processing apparatus (10) includes a high-pass filter (1) that extracts a mid-high range component from the input image signal; a non-linear processing unit (2) that performs non-linear processing on an output signal from the high-pass filter (1); an addition unit (3); a threshold value determination unit (4) that determines an upper threshold value and lower threshold value for clipping processing based on the maximum value and minimum value of the pixel values in the input image signal in the range thereof that was subjected to processing by the high-pass filter (1); a clipping unit (5) that performs clipping processing using the upper threshold value and lower threshold value; a high-pass filter (6) for an output signal from the clipping unit (5); a non-linear processing unit (7) that performs non-linear processing on an output signal from the high-pass filter (6); and an addition unit (8) that adds an output signal from the non-linear processing unit (7) and the output signal from the clipping unit (5).
摘要:
Provided is an image display device that has pixels each of which includes sub-pixels of four or more colors, and displays a high-definition image that has been subjected to sub-pixel-level filtering processing. The image display device includes a display panel (500) in which color filters of sub-pixel colors including three principal colors of red, green, and blue as well as at least one color other than the three principal colors are arranged regularly; and an image processor (40) that performs filtering processing with respect to an input image signal. The image processor (40) include: a principal color conversion section (41) that generates sub-pixel signals (RGBYe) corresponding to the sub-pixel colors, respectively, from the input image signals Rin, Bin, and Gin of the three principal colors; and a sub-pixel enhancement section (42) that gives, to the sub-pixel signals, position information in accordance with an order of arrangement of the color filters of the sub-pixel colors in the display panel (500), and performs the filtering processing sub-pixel by sub-pixel.
摘要:
Provided is an image display device having pixels each of which includes sub-pixels of four or more colors and requires fewer dither matrices. This image display device includes a display section in which color filters of sub-pixel colors that are M colors in total including three principal colors of red, green, and blue, as well as at least one color other than the three principal colors are arranged regularly and a gray-scale processing section (50) that performs gray-scale processing by a dither method with respect to an input image signal. The M sub-pixel colors are divided into N groups (G 1 to G N ) in such a manner that there is at least one group to which two or more colors belong. The gray-scale processing section (50) includes dither matrix storage ROMs (54 1 to 54 N ) that store N combinations of dither matrices corresponding to the N groups, respectively.
摘要:
It is an object to prevent the image quality deterioration of a moving image likely to include a plurality of the same consecutive images such as a movie video image or a CG video image due to the motion-compensated frame rate conversion (FRC) processing. An image displaying device is provided with an FRC portion (10) for converting the number of frames in an input image signal by interpolating an image signal to which a motion compensation processing has been given between the frames in the input image signal, a controlling portion (14) for controlling each portion according to an image tone mode selected by a user.; The FRC portion (10) includes a motion vector detecting portion (11e) for detecting a motion vector between the frames of the input image signal, an interpolating vector evaluating portion (11f) for allocating an interpolating vector between the frames based on the motion vector information, and an interpolating frame generating portion (12d) for generating an interpolating frame from the interpolating vector. In the case that the image tone mode selected by the user is a predetermined image tone mode, the controlling portion (14) set the motion vector detected by the motion vector detecting portion (11e) to zero-vector to make the motion compensation processing of the FRC portion (10) ineffective.
摘要:
In an image displaying device that includes a frame rate converting (FRC) portion, deterioration in image quality particularly of a telop part is prevented. The FRC portion 100 includes a motion vector detecting portion 101 and an interpolation frame generating portion 102. The motion vector detecting portion 101 includes a frame delaying portion 1 for delaying an input signal by one frame, an initial displacement vector selecting portion 2 for selecting and outputting an initial displacement vector used for vector detection, a motion vector calculating portion 3 for detecting a motion vector using the initial displacement vector, a vector memory 4 for storing a vector detection result, and a telop information detecting portion 5 for detecting an area where one or more telops exist and a moving speed thereof using a vector detection result in a previous frame supplied from the vector memory 4. The detection result from the telop information detecting portion 5 is reflected in processing in the initial displacement vector selecting portion 2 and/or the motion vector calculating portion 3 to improve accuracy of detecting a vector of a telop part.
摘要:
It is an object to prevent the image quality deterioration of a moving image likely to include a plurality of the same consecutive images such as 2-3 or 2-2 pulldown video due to the motion-compensated frame rate conversion (FRC) processing. An image displaying device is provided with an FRC portion (10) for converting the number of frames in an input image signal by interpolating an image signal to which a motion compensation processing has been given between the frames in the input image signal, a pulldown detecting portion (14) for detecting whether the input image signal is an image signal to which pulldown conversion has been performed, and a controlling portion (15). The FRC portion (10) includes a motion vector detecting portion (11e) for detecting a motion vector between the frames of the input image signal, an interpolating vector evaluating portion (11f) for allocating an interpolating vector between the frames based on the motion vector information, and an interpolating frame generating portion (12d) for generating an interpolating frame from the interpolating vector. In the case that the input image signal is an image signal to which pulldown conversion has been performed, the controlling portion (15) set the motion vector detected by the motion vector detecting portion (11e) to zero-vector to make the motion compensation processing of the FRC portion (10) ineffective.
摘要:
In an image displaying apparatus including a motion compensated rate converting (FRC) portion, deterioration of image quality is prevented in an image having a high-speed region and a low-speed region mixed. The FRC portion includes a motion vector detecting portion 11e and an interpolation frame generating portion 12b. The motion vector detecting portion 11e includes a first region detecting means 112e 1 that detects a first region (high-speed region) including a motion amount equal to or greater than a first predetermined amount from an input image signal, a second region detecting means 112e 2 that detects a second region (low-speed region) including a motion amount equal to or less than a second predetermined amount from the input image signal, and a third region detecting means 113e that detects a still region from an inter-frame difference of the input image signal. The interpolation frame generating portion 12b executes a motion compensated interpolation process using motion vectors for the still region in the first region (background) and executes a zero-vector interpolation process for the still region in the second region (foreground).
摘要:
The crosstalk of a display apparatus can be efficiently eliminated to realize a precise, high-quality display. A liquid crystal display apparatus includes, as a crosstalk elimination circuit, an adjacent picture element acquisition circuit (1) that acquires display signals of picture elements adjacent to a self picture element, and two-dimensional LUTs (2) that use the display signals of the adjacent picture elements, acquired by the adjacent picture element acquisition circuit (1), to correct display signals of the self picture element so as to correct RGB display signals. The picture element display signals as corrected by the correction values output from the LUTs (2) are output to a source driver (4) via a timing controlling unit (TC) (3). In the crosstalk elimination circuit, the display signals of a picture element to be corrected and those of picture elements adjacent to the picture element that influence the picture element are used to acquire a correction value, thereby correcting the display signals of the correction target picture element.