摘要:
This invention discloses a process for synthesizing a styrene-butadiene polymer which comprises the steps of: (1) continuously charging 1,3-butadiene monomer, an organolithium compound, a polar modifier and an organic solvent into a first polymerization zone, (2) allowing the 1,3-butadiene monomer to polymerize in said first polymerization zone to a conversion of at least 90 percent to produce a living polymer solution, (3) continuously withdrawing said living polymer solution from said first polymerization zone, (4) continuously charging divinyl benzene and the living polymer solution being withdrawn from the first polymerization zone into a second polymerization zone, (5) allowing the divinyl benzene monomer to react with the living polybutadiene chains in said second polymerization zone to produce a solution of living divinylbenzene modified butadiene polymer, (6) continuously withdrawing the solution of said divinylbenzene modified butadiene polymer from the second polymerization zone, (7) continuously charging styrene and the living divinylbenzene modified butadiene polymer being withdrawn from the second polymerization zone into a third polymerization zone, (8) allowing the styrene to polymerize in the third polymerization zone to produce a solution of styrene-butadiene polymer having a number average molecular weight which is within the range of 30,000 to 85,000 and (9) continuously withdrawing the solution of styrene-butadiene polymer from the third polymerization zone.
摘要:
Tire rubbers which are prepared by anionic polymerization are frequently coupled with a suitable coupling agent, such as a tin halide, to improve desired properties. It has been unexpectedly found that greatly improved properties for tire rubbers, such as lower hysteresis, can be attained by asymmetrically coupling the rubber. This invention discloses a process for preparing an asymmetrical tin-coupled rubbery polymer which comprises: (1) continuously polymerizing in a first reactor at least one diene monomer to a conversion of at least about 90 percent, utilizing an anionic initiator to produce a polymer cement containing living polydiene rubber chains; (2) continuously feeding the polymer cement produced in the first reactor into a second reactor; (3) adding a tin halide to the polymer cement in a second reactor under conditions of agitation to produce a polymer cement having the tin halide homogeneously dispersed therein, wherein the residence time in the second reactor is within the range of about 15 minutes to about 4 hours; (4) continuously feeding the polymer cement having the tin halide homogeneously dispersed therein into a plug flow reactor having a residence time of about 15 minutes to about 1 hour to produce a polymer cement of the asymmetrically tin-coupled rubbery polymer; and (5) continuously withdrawing the polymer cement of the asymmetrically tin-coupled rubbery polymer from the plug flow reactor. The asymmetrically tin-coupled rubbery polymer made by this process exhibits improved stability on aging.
摘要:
Diisopropenylbenzene is a monomer that can be used in the preparation of many useful polymers and is also a chemical intermediate that can be employed in a number of chemical processes. Diisopropenylbenzene is normally synthesized by the dehydrogenation of diisopropylbenzene. Unfortunately in this dehydrogenation process a number of olefinic impurities are produced as by-products. This invention discloses a process for the separation of diisopropenylbenzene from these impurities and for recycling some of the impurities. In one embodiment of this invention this process comprises: (1) dehydrogenating diisopropylbenzene to form a dehydrogenation mixture containing diisopropenylbenzene and organic impurities, (2) continuously distilling said dehydrogenation mixture to separate said diisopropenylbenzene from said organic impurities in a continuous recovery column 10, (3) fully hydrogenating said organic impurities to form a mixture of regenerated diisopropylbenzene and saturated organic impurities, and (4) fractionally distilling said mixture of regenerated diisopropylbenzene and saturated organic impurities under conditions sufficient to separate said regenerated diisopropylbenzene from said saturated organic impurities. The regenerated diisopropylbenzene can then be recycled for dehydrogenation with fresh diisopropylbenzene in the first step of the above described process.