摘要:
A first radio network node (110) and a method therein for measuring interference as well as a second radio network node (120) and a method therein for enabling the first radio network node to measure interference are disclosed. The first radio network node (110) obtains (201) configuration information for indicating a designated subframe in which a reference signal for measurement of the interference is to be transmitted by the second radio network node (120). The second radio network node (120) obtains (202) configuration information for configuring a designed subframe for transmission of a reference signal. The first radio network node (110) receives (205), in the designated subframe indicated by the configuration information, the reference signal transmitted by the second radio network node (120). The first radio network node (110) determines (206) a value of the interference based on the reference signal.
摘要:
The present disclosure relates to a method for use in a wireless communication device reporting ACK or NACK in dynamic TDD configurations. In the method, an indication of a reference UL TDD configuration and a reference DL TDD configuration is indicated. Then, ACK or NACK bits with a fixed number of the ACK or NACK bits based on the reference DL TDD configuration are reported at a timing based on the reference DL TDD configuration. The present disclosure also relates to a wireless communication device for reporting ACK/NACK in dynamic TDD configurations.
摘要:
The present disclosure relates to a method used in a User Equipment (UE) for reporting Hybrid Automatic Repeat Request (HARQ) acknowledgement (ACK)/non-acknowledgement (NACK) for Physical Downlink Shared Channels (PDSCHs) in dynamic time division duplex (TDD) configurations. In the method, a plurality of PDSCHs are received in DownLink (DL) subframes associated with an UpLink (UL) subframe and indicated by a DL reference TDD configuration. The DL subframes are divided into a first subset of DL subframes and a second subset of DL subframes. The first subset of DL subframes is also indicated by an UL reference TDD configuration. A first set of Physical Uplink Control Channel (PUCCH) resource indices are assigned based on resources used in transmission of Physical Downlink Control Channels (PDCCHs) corresponding to the PDSCHs received in the DL subframes of the first subset of DL subframes. A second set of PUCCH resource indices are assigned based on resources used in transmission of PDCCHs corresponding to the PDSCHs received in the DL subframes of the second subset of DL subframes. For each of the received PDSCHs, HARQ ACK/NACK is reported by using PUCCH resources in an order of the assigned first set of PUCCH resource indices for PDSCHs received in the DL subframes of the first subset of DL subframes and in an order of the assigned second set of PUCCH resource indices for PDSCHs received in the DL subframes of the second subset of DL subframes. The present disclosure also relates to a UE and BS for respectively reporting and receiving HARQ ACK/ NACK for PDSCHs in TDD configurations.
摘要:
A method of controlling power in a transmitter in communication with a receiver in a wireless communication network is disclosed comprising measuring a first metric of signals received in the receiver, the first metric usable to generate a power control command; determining a measurement error of the first metric; generating the power control command based on measured value of the first metric if the measurement error of the first metric does not exceed a threshold; and sending the power control command from the receiver to the transmitter.
摘要:
The present invention relates to a receiving node, and to a related method of adjusting a frequency domain channel estimate in a receiving node of a wireless communication system using Orthogonal Frequency Division Multiplexing. The method comprises estimating (210) a phase rotation of the frequency domain channel estimate, and compensating (220) for the estimated phase rotation in the frequency domain channel estimate. It also comprises transforming (230) the compensated frequency domain channel estimate into a time domain channel estimate, filtering (240) the time domain channel estimate to suppress noise, transforming (250) the filtered time domain channel estimate back into a noise suppressed frequency domain channel estimate, and adding (260) the estimated phase rotation in the noise suppressed frequency domain channel estimate to achieve an adjusted and improved frequency domain channel estimate.
摘要:
Techniques are disclosed for synchronizing frequency among a cluster of coordinated transmission points cooperating in a coherent joint transmission. In some embodiments, one transmission point is set (510) as a reference transmission point for a group of coordinated transmission points. Each of one or more other transmission points in the group receives (530) a specified downlink reference signal from the reference transmission point, measures (540) its frequency offset relative to the reference point, and compensates (550) the frequency offset in baseband processing or by a radio adjustment. Which transmission point acts as the reference transmission point is statically defined, in some embodiments, or dynamically configured, in others. Likewise, which time‐frequency resources are used for the reference signal may be statically defined or dynamically configured. In some embodiments, information identifying the reference transmission point and/or specifying the radio resource locations and durations of the reference signal is distributed to the synchronizing transmission points. (Figure 5)
摘要:
A hybrid combining method in a receiver (200) is provided, and the method includes that wideband combining, e.g. using a maximum ratio combining (MRC) or an interference rejection combing (IRC) process, to combine signals distributed over a first plurality of subcarrier frequencies from antennas (202) in the same polarization direction is performed, resulting in a combine signal for each polarization direction that is distributed over a smaller number of subcarrier frequencies, then a two-port narrowband IRC is done of these wideband combined signals for the two polarization directions, resulting in a diversity combined signal.
摘要:
Relay node (110), main unit (113) for a relay node and method in a main unit (113) for a relay node (110), which main unit (113) is connectible to a first radio unit (111) and to a second radio unit (112), for synchronising wireless communication over the second radio unit (112) with wireless communication over the first radio unit (111). The method comprises transmitting a synchronisation signal at the second radio unit (112), receiving the signal at the first radio unit (111), to compute a first timing difference corresponding to the signal propagation time and to adjust the downlink transmission timing at the second radio unit (112) according to the first timing difference. Similar signalling, estimation of timing difference and adjustment is made for signals to be received from the user equipment (130) at the second radio unit (112).
摘要:
The invention discloses a beamforming method for polarized antenna array consisting of a plurality of antenna elements, applied to single layer beamforming or dual layer beamforming, which includes the steps: determining (201) first beamforming weights for phase compensation among the antenna elements within each polarization direction; determining (202) second beamforming weights for phase compensation between equivalent channels of two polarization directions; and calculating (203) hybrid beamforming weights as product of the first beamforming weights and the second beamforming weights. A beamforming apparatus for polarized antenna array is also provided in the invention as well as a radio communication device and a system thereof With the invention, the single-layer and dual-layer beamforming weights are determined for the cross-polarized antenna array without requiring full channel knowledge or the aid of PMI. Computation complexity is lowered and full power amplifier utilization can be achieved.