摘要:
A Level-1 (L1) signaling flag is mapped to unused (invalid) bit sequences in Part 1 of the HS-SCCH - that is, Part 1 bit encodings that are not defined in the UTRAN specifications - and a corresponding L1 command is encoded in Part 2. This allows UE (18) to detect early that the HS-SCCH is pure L1 signaling, and the UE (18) may avoid wasting power by not processing an accompanying HS-PDSCH. Alternatively, in CPC HS-SCCH-less mode, the UE (18) may blind decode the HS PDSCH. In one embodiment, a general DRX mode is defined and controlled via L1 signaling. In one embodiment, a UE (18) acknowledgement improves the L1 signaling accuracy. In one embodiment, a L1 signal and UE (18) acknowledgement protocol are utilized to "ping" a UE (18).
摘要:
A communication system includes a transmitting communication device (310) and a receiving communication device (320). The transmitting communication device (310) determines a control element, e.g., a control element of a Media Access Control protocol, associated with one of the carriers and provides the control element with an identifier specifying the carrier the control element is associated with. The transmitting communication device (310) sends the control element with the identifier on one of the carriers to the receiving communication device (320). The receiving communication device (320) receives the control element and determines, from the identifier received with the control element, the carrier the control element is associated with. Further, the receiving communication device (320) determines, on the basis of parameters indicated by the control element, a data transmission property of the carrier the control element is associated with.
摘要:
Power headroom reports may be transmitted from a wireless terminal to a base station wherein a primary component carrier and at least one secondary component carrier are provided for uplink transmissions from the wireless terminal to the base station and wherein a respective component carrier index is assigned to each of the at least one secondary component carriers provided for the wireless terminal. Respective power headroom reports may be generated for the primary component carrier and for each of the at least one secondary component carriers, and a MAC control element may be generated including the power headroom reports for the primary and secondary component carriers. More particularly, the power headroom reports for each of the at least one secondary component carriers may be arranged in order of the component carrier indices for the respective secondary component carriers. The MAC control element including the power headroom reports for the primary and secondary component carriers may be transmitted from the wireless terminal to the base station over one of the component carriers. Related wireless terminals, and base stations are also discussed.
摘要:
Power headroom reports may be transmitted from a wireless terminal to a base station wherein a primary component carrier and at least one secondary component carrier are provided for uplink transmissions from the wireless terminal to the base station and wherein a respective component carrier index is assigned to each of the at least one secondary component carriers provided for the wireless terminal. Respective power headroom reports may be generated for the primary component carrier and for each of the at least one secondary component carriers, and a MAC control element may be generated including the power headroom reports for the primary and secondary component carriers. More particularly, the power headroom reports for each of the at least one secondary component carriers may be arranged in order of the component carrier indices for the respective secondary component carriers. The MAC control element including the power headroom reports for the primary and secondary component carriers may be transmitted from the wireless terminal to the base station over one of the component carriers. Related wireless terminals, and base stations are also discussed.
摘要:
The disclosure relates to a user equipment for a wireless communications system, and to a related method for identifying a resource to use for a transmission of control information on a physical uplink control channel, PUCCH, format 3. The method comprises receiving (610) a resource index from a serving radio base station, and identifying (620) the resource to use for the transmission of the control information in a subframe based on the received resource index, wherein the identified resource is within a same confined set of physical resource blocks regardless of if a normal or a shortened PUCCH format 3 is used in the subframe.
摘要:
Power headroom reporting and report handling are discussed in the context of a Physical Uplink Shared Channel (PUSCH), on which a user equipment (UE) has no valid uplink grant, and a Physical Uplink Control Channel (PUCCH) on which a UE has no transmission. Under these circumstances, it is not possible to directly calculate one or more parameters which are used to calculate power headroom. Accordingly, exemplary embodiments provide for predetermined, known values to be used by the UE to calculate the power headroom, and by the eNodeB to understand the meaning of a received power headroom report.
摘要:
The embodiments of the present invention relates to a method in a UE for distributing available transmit power to avoid violation of UE power limitations on the PUCCH and the PUSCH. Available power for transmission on at least the PUCCH is determined and at least one power headroom report indicating the available power for transmission on at least the PUCCH is transmitted to a base station.
摘要:
A Level-1 (L1) signaling flag is mapped to unused (invalid) bit sequences in Part 1 of the HS-SCCH - that is, Part 1 bit encodings that are not defined in the UTRAN specifications - and a corresponding L1 command is encoded in Part 2. This allows UE (18) to detect early that the HS-SCCH is pure L1 signaling, and the UE (18) may avoid wasting power by not processing an accompanying HS-PDSCH. Alternatively, in CPC HS-SCCH-less mode, the UE (18) may blind decode the HS PDSCH. In one embodiment, a general DRX mode is defined and controlled via L1 signaling. In one embodiment, a UE (18) acknowledgement improves the L1 signaling accuracy. In one embodiment, a L1 signal and UE (18) acknowledgement protocol are utilized to "ping" a UE (18).
摘要:
Power headroom reporting and report handling are discussed in the context of a Physical Uplink Shared Channel (PUSCH), on which a user equipment (UE) has no valid uplink grant, and a Physical Uplink Control Channel (PUCCH) on which a UE has no transmission. Under these circumstances, it is not possible to directly calculate one or more parameters which are used to calculate power headroom. Accordingly, exemplary embodiments provide for predetermined, known values to be used by the UE to calculate the power headroom, and by the eNodeB to understand the meaning of a received power headroom report.