Abstract:
This invention provides a method for forming an oxide layer on a metal substrate, which enables manufacture of an oxide layer with improved crystal orientation in comparison with that of the outermost layer of a metal substrate. The method for forming an oxide layer on a metal substrate 20 via RF magnetron sputtering comprises a step of subjecting the crystal-oriented metal substrate 20 exhibiting a c-axis orientation of 99% on its outermost layer to RF magnetron sputtering while adjusting the angle α formed by a perpendicular at a film formation position 20a on the metal substrate 20 and a line from the film formation position 20a to a point 10a at which the perpendicular magnetic flux density is zero on the target 10 located at the position nearest to the film formation position 20a to 15 degrees or less.
Abstract:
An object of the present invention is to provide a method for producing a metal laminate material that maintains sufficient bonding strength and has superior production efficiency. A method for producing a metal laminate material by bonding two sheets, one sheet composed of a material M1 and the other sheet composed of a material M2, wherein each of M1 and M2 is a metal or alloy comprising any one or more selected from the group consisting of Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Pd, Ag, In, Sn, Hf, Ta, W, Pb, and Bi, comprises the steps of: subjecting the faces of the two sheets to be bonded to sputtering treatment with inert gas ions under vacuum such that oxide layers on surface layers remain; temporarily bonding the two sheets by roll pressure bonding; and conducting a thermal treatment to thereby bond the two sheets, and, when Tm1 > Tm2 where Tm1(K) is the melting point of M1 and Tm2(K) is the melting point of M2, the temperature of the thermal treatment is 0.45Tm2 or more and less than 0.45Tm1, provided that the temperature is not more than Tm2.
Abstract:
This invention provides a substrate for a superconducting wire used for manufacturing a superconducting wire with excellent superconductivity and a method for manufacturing the same. Such substrate for a superconducting wire has crystal orientation of metals on the outermost layer, such as a c-axis orientation rate of 99% or higher and a Δϕ of 6 degrees or less, and a percentage of an area in which the crystal orientation is deviated by 6 degrees or more from the (001) [100] per unit area is 6% or less.