摘要:
There is described an element having an immersible portion for contact with an aqueous liquid, the immersible portion comprising a contact surface which is for contact with the aqueous liquid, the contact surface configured to have strong acidity. The invention also relates to a radiation (e.g., ultraviolet radiation) source assembly, a radiation (e.g., ultraviolet radiation) source module and a fluid (e.g., water) treatment system incorporating this element. The present invention is applicable to any surface in contact with fluid that is susceptible to build-up of fouling materials. Thus, the present inventor has discovered an approach which obviates or mitigates the rate of accumulation of fouling on surfaces in contact with aqueous solution, such as the protective (e.g., quartz) sleeves in an ultraviolet radiation fluid treatement system. This approach involves modifying at least a portion of the surface of those sleeves in contact with fluid (e.g., water) to have an inherent strong surface acidity. In some cases, this can obviate the need for complex mechanical cleaning equipment or at least result in a reduced frequency of mechanical cleaning.
摘要:
There is described a photocatalyst composition of matter comprising a support material. A surface of the support material configured to comprise: (i) a first catalytic material for catalyzing the conversion of H 2 O to H 2 and O 2 , and (ii) a second catalytic material catalyzing reaction of hydrogen with a target compound. The photocatalyst composition of matter can be used to treat an aqueous fluid containing a target chemical compound, for example, by a process comprising the steps of: (i) contacting the aqueous fluid with the above-mentioned photocatalyst composition of matter; (ii) contacting the aqueous fluid with radiation during Step (i); (iii) catalyzing the conversion of water in the aqueous fluid to H 2 and O 2 with the first catalytic material; and (iv) catalyzing reaction of the target chemical compound in the aqueous fluid with hydrogen from Step (iii) in the presence of the second catalytic material to produce a modified chemical compound.