摘要:
The adaptive temperature controller (10) includes a device for measuring resistance, an electrically-conductive material (50), a power supply (11), and a device for controlling power (12). In operation, the controller (10) determines the resistance of material (50) at one or more temperatures and therefore determines the resistance of the material (50) through a range of operating temperature. Based on such determination so long as voltage and power are known, the resistance of the material (50), and therefore its temperature, are known. As a result the voltage or power may be instantly varied to produce near infinite control over material temperature.
摘要:
The discharge systems of this disclosure are useful in the chemical analysis field, including identification and quantification of gaseous impurities. The systems utilize a pair of electrodes which apply a spark across a gap between the electrodes, the spark preferably being repetitively formed. As an inert gas flows between the electrodes, the spark creates photons of energy which are emitted and are used as described. In alternate aspects, other particles are energized in the spark gap and subsequently surrender their energy. Photon emission or loss of energy assists in identification and measurement of peaks eluted from a typical gas chromatograph. The preferred inert gas is helium with or without traces of rare inert gases.
摘要:
The adaptive temperature controller (10) includes an ambient temperature sensor (30), a device for measuring resistance, an electrically-conductive material (50), a power supply, and a device for controlling power. In operation, the controller (10) determines the resistance of material at or near ambient temperature. Based on such determination so long as voltage and power are known, the resistance of the material, and therefore its instant temperature is known. Additionally, the adaptive temperature controller (10) determines the responsiveness of the electrically-conductive material (50) to determine the predicted increase in temperature and rate of increase in temperature relative to increases in voltage, current or power. As a result the voltage or power may be instantly varied to produce near infinite control over material temperature.
摘要:
A spark detection apparatus is set forth and incorporates a closed chamber (21) for receiving a carrier gas (12) flowing therethrough between inlets (18) and outlets (36), and the carrier gas (12) is exposed to a pair of electrodes (31, 32) forming a spark across the chamber (21) and through the carrier gas. Compounds of interest interact with the spark. The spark forms a diffusion of electrons or alternately ions during the spark distributed thereafter. The chamber (21) includes a detector electrode (26) spaced from the spark. High mobility particles (primarily electrons) are observed almost instantaneously with the spark while low mobility ionic particles diffuse more slowly after the termination of the spark. Using an inert carrier gas (12), high energy metastable molecules are dispersed and give up energy over time after the spark. The ouput is obtained from the electrode (27) during, immediately after, or after a long delay relative to the spark. Another alternate output is obtained from the observed spectra during the spark and after the spark.
摘要:
A temperature controller for simultaneously controlling the temperatures of a plurality of heating elements for use in chromatographic analysis including columns, detectors, valves, transport lines and other components.
摘要:
L'invention concerne un appareil de détection par étincelle comprenant une chambre fermée (21) destinée à recevoir un gaz porteur s'écoulant dans ladite chambre entre des entrées (18) et des sorties (36), ledit gaz porteur (12) étant exposé à une paire d'électrodes (31, 32) formant une étincelle dans la chambre (21) et dans le gaz porteur. Des composés étudiés interagissent avec l'étincelle. L'étincelle forme une diffusion d'électrons ou bien d'ions pendant l'étincelle répartie ensuite. La chambre (21) comprend une électrode de détection (26) espacée de l'étincelle. Des particules hautement mobiles (essiellement des électrons) sont observées presque instantanément avec l'étincelle tandis que des particules ioniques de faible mobilité se diffusent plus lentement après extinction de l'étincelle. L'utilisation d'un gaz porteur inerte (12) permet la dispersion de molécules métastables de haute énergie, lesquelles dégagent de l'énergie dans le temps après l'étincelle. Le résultat est obtenu à partir de l'électrode (27) pendant, immédiatement après, ou après une durée longue suivant à l'étincelle. Un autre résultat est obtenu à partir des spectres observés pendant l'étincelle et après cette dernière.