摘要:
A method of biologically treating wastewater and removing contaminants from the wastewater is disclosed. In the course of treating the wastewater, biomass is produced. In addition to removing contaminants from the wastewater, the process or method of the present invention entails enhancing the PHA accumulation potential of the biomass. Disclosed are a number of processes that are employed in a biological wastewater treatment system for enhancing PHA accumulation potential. For example, enhanced PHA accumulation potential is realized by exposing the biomass to feast and famine conditions and, after exposing the biomass to famine conditions, stimulating the biomass into a period of feast by exposing the biomass to feast conditions for a selected period of time by applying an average peak stimulating RBCOD feeding rate of greater than 5 mg-COD\L\MIN in combination with an average peak specific RBCOD feeding rate greater than 0.5 mg-COD\g-VSS\MIN. In another example, the PHA accumulation potential of the biomass is enhanced by subjecting the biomass to feast conditions that cause the biomass to reach a peak respiration rate that is at least 40% of the extant maximum respiration rate of the biomass. Other processes are discussed that can contribute to enhancing PHA accumulation potential of biomass.
摘要:
A biofilm process is disclosed for treating wastewater containing readily biodegradable dissolved organic matter (measured as chemical oxygen demand or COD) and producing surplus biomass from the biofilm process that includes an enhanced polyhydroxyalkanoate (PHA) content. The process comprises directing a wastewater influent containing the readily biodegradable COD (RBCOD) into a biofilm unit process. The PHA content of surplus biomass is enhanced by controlling for a decreased biofilm process specific organic loading rate in combination with controlling phosphorus loading rates relative to the process RBCOD loading rates: (1) controlling the wastewater influent phosphorus loading rate to the biofilm unit process includes maintaining an average RBCOD/P ratio of the influent that is between 200 and 800 g/g; (2) decreasing the process specific organic loading rate includes producing a biofilm unit process effluent having readily separable mixed liquor volatile suspended solids (RS-MLVSS); and (3) separating a portion of the RS-MLVSS from the biofilm unit process effluent and recycling at least a portion of the separated RS-MLVSS back to the biofilm unit process. The combination of the RBCOD/P control and specific loading rate control maintains, on average, the surplus biomass with a PHA content that is greater than 30% gPHA/g VSS.