摘要:
Provided is a 3-aminomethyl-3,5,5-trimethylcyclohexylamine preparation method. A feeding flow of 3-cyano-3,5,5-trimethylcyclohexylimine is reacted with NH 3 and hydrogen in the presence of a hydrogenation catalyst; the method is characterized by: firstly adding a basic compound to the feeding flow of 3-cyano-3,5,5-trimethylcyclohexylimine, and then after a portion of 3-cyano-3,5,5-trimethylcyclohexylimine has reacted, adding an acidic compound to reaction materials for further hydrogenation reaction to prepare the product. The method ensures that the aminonitrile content in the product is low, thus effectively reducing the duration of the reaction and greatly reducing the consumption of the catalyst during the hydrogenation reaction process.
摘要:
The invention discloses a method for preparation of N-(2-aminoethyl)ethane-1,2-diamine (DETA), which comprises steps of preparing a mixture by dissolving iminodiacetonitrile (IDAN) in an organic solvent and adding an anion exchange resin of OH type and a stabilizing agent for IDAN, subjecting the mixture to hydrogenation in the presence of a hydrogenation catalyst and a first aid at a temperature of 50-150°C, preferably 70-90°C, and under a pressure of 5-25 Mpa, preferably 9-14 Mpa to obtain DETA. In comparison with the known methods, the process of the present invention may inhibit the decomposition of IDAN, eliminate the poisoning factors for the catalyst, so as to prolong the service life of the catalyst, improve the efficiency of the process and obtain the product with high purity.
摘要:
The present invention provides a method for preparing 3-aminomethyl-3,5,5-trimethyl cyclohexylamine. The method comprises: a) reacting 3-cyano-3,5,5-trimethyl cyclohexanone with excess primary amine as well as removing the water generated from the reaction, so that IPN is substantially converted into imine compounds; b) in the presence of an ammonolysis catalyst, mixing the product of step a) with liquid ammonia, making the imine compound perform ammonolysis reaction to generate 3-cyano-3,5,5-trimethyl cyclohexylimine and the primary amine; and c) in the presence of hydrogen and a hydrogenation catalyst, hydrogenating 3-cyano-3,5,5-trimethyl cyclohexylimine obtained in step b) to obtain 3-aminomethyl-3,5,5-trimethyl cyclohexylamine. The method of the present invention avoids the generation of 3,5,5-trimethyl cyclohexanol and 3-aminomethyl-3,5,5-trimethyl cyclohexanol as the major by-products in the prior art, thereby improving the yield of 3-aminomethyl-3,5,5-trimethyl cyclohexylamine.