摘要:
In a music reproducing apparatus, a timbre data memory has a limited capacity for storing timbre data corresponding to a first number of timbres, which is less than a second number of timbres reserved in a data source. An interface can be operated to transfer the timbre data from the data source to the timbre data memory so that the timbre data memory stores the transferred timbre data. A score data memory stores score data representing a music piece. A tone generator is set with a tone generating parameter derived from the score data stored in the score data memory for generating tones of the music piece. A performance controller interprets the score data to read out timbre data designated by the score data from the timbre data memory for setting the tone generator with the read timbre data so that the tone generator can generate the tones having timbres specified by the score data. Further, a memory monitor detects when a vacant area is created in a limited space of the score data memory upon sequential retrieval of the score data for operating the interface to load another part of the score data into the vacant area, thereby enabling the tone generator to continue the generating of the tones of the music piece.
摘要:
In a music reproducing apparatus, a timbre data memory (34) has a limited capacity for storing timbre data corresponding to a first number of timbres, which is less than a second number of timbres reserved in a data source. An interface (30) can be operated to transfer the timbre data from the data source to the timbre data memory (34) so that the timbre data memory (34) stores the transferred timbre data. A score data memory (31) stores score data representing a music piece. A tone generator (35) is set with a tone generating parameter derived from the score data stored in the score data memory (31) for generating tones of the music piece. A performance controller interprets the score data to read out timbre data designated by the score data from the timbre data memory (34) for setting the tone generator (35) with the read timbre data so that the tone generator (35) can generate the tones having timbres specified by the score data. Further, a memory monitor detects when a vacant area is created in a limited space of the score data memory (32) upon sequential retrieval of the score data for operating the interface (30) to load another part of the score data into the vacant area, thereby enabling the tone generator (35) to continue the generating of the tones of the music piece.
摘要:
In a music reproducing apparatus, a timbre data memory has a limited capacity for storing timbre data corresponding to a first number of timbres, which is less than a second number of timbres reserved in a data source. An interface can be operated to transfer the timbre data from the data source to the timbre data memory so that the timbre data memory stores the transferred timbre data. A score data memory stores score data representing a music piece. A tone generator is set with a tone generating parameter derived from the score data stored in the score data memory for generating tones of the music piece. A performance controller interprets the score data to read out timbre data designated by the score data from the timbre data memory for setting the tone generator with the read timbre data so that the tone generator can generate the tones having timbres specified by the score data. Further, a memory monitor detects when a vacant area is created in a limited space of the score data memory upon sequential retrieval of the score data for operating the interface to load another part of the score data into the vacant area, thereby enabling the tone generator to continue the generating of the tones of the music piece.
摘要:
In a music reproducing apparatus, a timbre data memory has a limited capacity for storing timbre data corresponding to a first number of timbres, which is less than a second number of timbres reserved in a data source. An interface can be operated to transfer the timbre data from the data source to the timbre data memory so that the timbre data memory stores the transferred timbre data. A score data memory stores score data representing a music piece. A tone generator is set with a tone generating parameter derived from the score data stored in the score data memory for generating tones of the music piece. A performance controller interprets the score data to read out timbre data designated by the score data from the timbre data memory for setting the tone generator with the read timbre data so that the tone generator can generate the tones having timbres specified by the score data. Further, a memory monitor detects when a vacant area is created in a limited space of the score data memory upon sequential retrieval of the score data for operating the interface to load another part of the score data into the vacant area, thereby enabling the tone generator to continue the generating of the tones of the music piece.
摘要:
A sound source apparatus (1) has a plurality of tone forming parts (10a-10i) for outputting either of desired tones or formants according to designation of a wave table sound source mode or a voice synthesizing mode, such that the tone forming parts generate the tones in the wave table sound source mode, and generate the formants for synthesis of a voice in the voice synthesizing mode. Each tone forming part has an envelope application section that operates in the wave table sound source mode for generating an envelope signal which rises in synchronization with an instruction to start the generating of the tone and decays in synchronization with another instruction to stop the generating of the tone, and applying the generated envelope signal to waveform data read from a wave table. The envelope application section operates in the voice synthesizing mode for generating an envelope signal which rapidly decays every timing corresponding to a pitch period of the voice to be synthesized and rapidly rises after the decay, and applying the generated envelope signal to the waveform data read from a wave table.