摘要:
A rotor-stator structure for electrodynamic machinery is disclosed to, among other things, minimize magnetic flux path lengths and to eliminate back-iron for increasing torque and/or efficiency per unit size (or unit weight) and for reducing manufacturing costs. In one embodiment, an exemplary rotor-stator structure can comprise a shaft defining an axis of rotation, and a rotor on which at least two magnets are mounted on the shaft. The two magnets can be cylindrical or conical magnets having magnetic surfaces that confront air gaps. In some embodiments, substantially straight field pole members can be arranged coaxially and have flux interaction surfaces formed at both ends of those field poles. Those surfaces are located adjacent to the confronting magnetic surfaces to define functioning air gaps, which are generally curved in shape.
摘要:
Disclosed are foil coil structures and methods for winding the same for stators in electrodynamic machines, as well as electrodynamic machines that implement such coil structures. In one embodiment, a foil coil structure is configured for implementation with a field pole member having pole faces that confront, for example, conical magnets.
摘要:
Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies with a corresponding stator assembly. In some embodiments a rotor assembly can include magnetically permeable structures having confronting surfaces oriented at an angle to the axis of rotation. A group of magnetic structures can be interleaved with the magnetically permeable structures. The magnetically permeable structures can also include non-confronting surfaces adjacent to which boost magnets are disposed to enhance flux in a flux path passing through magnetic structures that are interleaved with magnetically permeable structures. Further, the rotor assemblies can include a flux conductor shield disposed adjacent to the boost magnets, the flux conductor shield configured to provide return flux paths.
摘要:
A method, apparatus, article of manufacture and system for producing a field pole member for electrodynamic machinery are disclosed to, among other things, reduce magnetic flux path lengths and to eliminate back-iron for increasing torque and/or efficiency per unit size (or unit weight) and for reducing manufacturing costs. For example, a field pole member structure can either reduce the length of magnetic flux paths or substantially straighten those paths through the field pole members, or both. In one embodiment, a method provides for the construction of field pole members for electrodynamic machines.
摘要:
A method for constructing a three-dimensional laminated shape includes selecting a first lamination strip from a plurality of lamination strips with different widths assembled on a spool. The first lamination strip is stacked on a stacking device and is cut at a first length. A second lamination strip is selected from the spool and is stacked and cut at a second length different than the first length. The process is repeated to construct a three-dimensional laminated shape of an electrodynamic device. In another embodiment, a computer readable storage medium includes executable instructions to collect design information characterizing a three-dimensional laminated shape and compute lamination parameters based thereon. The medium further includes instructions to direct a plurality of components to construct a three-dimensional laminated shape of an electrodynamic device using the parameters. The three-dimensional laminated shape comprises a plurality of strips of different widths and lengths.
摘要:
Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies with a corresponding stator assembly. In some embodiments a rotor assembly can include magnetically permeable structures having confronting surfaces oriented at an angle to the axis of rotation. A group of magnetic structures can be interleaved with the magnetically permeable structures. The magnetically permeable structures can also include non-confronting surfaces adjacent to which boost magnets are disposed to enhance flux in a flux path passing through magnetic structures that are interleaved with magnetically permeable structures. Further, the rotor assemblies can include a flux conductor shield disposed adjacent to the boost magnets, the flux conductor shield configured to provide return flux paths.
摘要:
Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies with a corresponding stator assembly. In some embodiments a rotor assembly can include magnetically permeable structures having confronting surfaces oriented at an angle to the axis of rotation. A group of magnetic structures can be interleaved with the magnetically permeable structures. The magnetically permeable structures can also include non-confronting surfaces adjacent to which boost magnets are disposed to enhance flux in a flux path passing through magnetic structures that are interleaved with magnetically permeable structures. Further, the rotor assemblies can include a flux conductor shield disposed adjacent to the boost magnets, the flux conductor shield configured to provide return flux paths.
摘要:
A rotor-stator structure for electrodynamic machinery is disclosed to, among other things, minimize magnetic flux path lengths and to eliminate back-iron for increasing torque and/or efficiency per unit size (or unit weight) and for reducing manufacturing costs. In one embodiment, an exemplary rotor-stator structure can comprise a shaft defining an axis of rotation, and a rotor on which at least two substantially conical magnets are mounted on the shaft. The magnets include conical magnetic surfaces facing each other and confronting air gaps. In some embodiments, substantially straight field pole members can be arranged coaxially and have flux interaction surfaces formed at both ends of those field poles. Those surfaces are located adjacent to the confronting conical magnetic surfaces to define functioning air gaps. Current in coils wound on the field poles provide selectable magnetic fields that interact with magnet flux in flux interaction regions to provide torque to the shaft.
摘要:
A rotor-stator structure for electrodynamic machinery is disclosed to, among other things, minimize magnetic flux path lengths and to eliminate back-iron for increasing torque and/or efficiency per unit size (or unit weight) and for reducing manufacturing costs. In one embodiment, an exemplary rotor-stator structure can comprise a shaft defining an axis of rotation, and a rotor on which at least two magnets are mounted on the shaft. The two magnets can be cylindrical or conical magnets having magnetic surfaces that confront air gaps. In some embodiments, substantially straight field pole members can be arranged coaxially and have flux interaction surfaces formed at both ends of those field poles. Those surfaces are located adjacent to the confronting magnetic surfaces to define functioning air gaps, which are generally curved in shape.