摘要:
Described herein is a temperature control system for cooling magnetic elements (14) in MRI apparatus (10). The control system comprises a wax (16) in contact with the elements (14) which is substantially maintained at its phase transition temperature between a solid state and a liquid state, but in a substantially solid state. A sensor (18) is immersed in the wax (16) and operates to provide a signal on the change of state of the wax (16). The sensor (18) is connected to a controller (20) which controls the operation of a heating element (26) also immersed in the wax (16) to control the temperature thereof. When the MRI apparatus is operational, heat is generated by the magnetic elements (14) is used to change the wax (16) to a liquid, this change being detected by the sensor (18) which sends signals to the controller (20) to turn off the heating element (26). Once, the sensor (18) detects that the wax (16) has reverted to a substantially solid state, the controller (20) turns the heating element (26) on to maintain the wax (16) at its phase transition temperature but in a substantially solid form.
摘要:
The present invention relates to pulse tube refrigerators for recondensing cryogenic liquids. In particular, the present invention relates to the same for magnetic resonance imaging systems. In many cryogenic applications components, e.g. superconducting coils for magnetic resonance imaging (MRI), superconducting transformers, generators, electronics, are cooled by keeping them in contact with a volume of liquified gases (e.g. Helium, Neon, Nitrogen, Argon, Methane). Any dissipation in the components or heat getting into the system causes the volume to part boil off. To account for the losses, replenishment is required. This service operation is considered to be problematic by many users and great efforts have been made over the years to introduce refrigerators that recondense any lost liquid right back into the bath. The present invention addresses the problems arising from convection which occurs within a pulse tube refrigerator. The invention provides in a first aspect, a pulse tube refrigerator PTR arrangement within a cryogenic apparatus, wherein a PTR is operable within an insertion sock associated with a housing of the cryogenic apparatus for the placement of the PTR such that a first end is exposed to room temperature and a second end is associated with a cryogenic fluid, wherein the tubes of the PTR are surrounded by an insulating 2s sleeve. This configuration has been shown to reduce convection and problems associated therewith.
摘要:
Described herein is a temperature control system for cooling magnetic elements (14) in MRI apparatus (10). The control system comprises a wax (16) in contact with the elements (14) which is substantially maintained at its phase transition temperature between a solid state and a liquid state, but in a substantially solid state. A sensor (18) is immersed in the wax (16) and operates to provide a signal on the change of state of the wax (16). The sensor (18) is connected to a controller (20) which controls the operation of a heating element (26) also immersed in the wax (16) to control the temperature thereof. When the MRI apparatus is operational, heat is generated by the magnetic elements (14) is used to change the wax (16) to a liquid, this change being detected by the sensor (18) which sends signals to the controller (20) to turn off the heating element (26). Once, the sensor (18) detects that the wax (16) has reverted to a substantially solid state, the controller (20) turns the heating element (26) on to maintain the wax (16) at its phase transition temperature but in a substantially solid form.
摘要:
Described herein is an improved suspension system for cryostat vessels forming a part of magnetic resonance imaging (MRI) apparatus. The MRI apparatus comprises an outer cylindrical element, an inner cylindrical element mounted within the outer element, and a suspension system for accurately mounting the inner element with respect to the outer element. The suspension system comprises a plate (40) pivotally mounted on the inner cylindrical element (10) for rotation relative thereto and a pair of continuous bands (66, 68) connecting the plate (40) to the outer element. Adjusters are positioned offset from the axis of rotation of the plate for tensioning the bands. Locking means are also provided to retain the plate in a given position relative to the outer element.
摘要:
The various components, namely the different vessels contained within each other for housing the superconducting magnet, or the liquid comprising a cryostat or storage tank for cryogenic liquids are generally either suspended or supported by each other. Thus, a support/suspension system has various tasks, besides carrying the magnet or shield loads, it also keeps the position of the cold mass during shipping and also fixes the internal clearances between the radiation shields during installation as well as repeated cooldown. The various constraints put onto these suspension systems result in an increased input of heat into the cryostat depending on the overall size of cryostat and superconducting magnet system. Various parts of the cryogenic components such as radiation shields have to be cooled, either by means of using liquids or by using forced convection cooling, or by other external means such as conventional GM-cryocoolers. The present invention therefore provides a new type of support or suspension system which combines the two functions mentioned above, namely supporting or suspending and cooling, and applies these to the pulse tube cooler. The pulse tubes (22-38) could be arranged in series or in parallel, could be single or multi-staged or feature an additional liquefying stage and suspend or support a superconducting magnet or HTS conductor within a cryostat. The pulse tube being either a suspension or support member could also simultaneously cool the shields 26 connected to it and at the same time carry shield or magnet loads.
摘要:
An open electromagnet including a pair of field coils which respectively comprise juxtaposed poles of the electromagnet between which an imaging volume of substantially homogeneous magnetic field is defined, toroidal shielding coil means arranged on a locus which forms a loop, so that when energised, the said shielding coil means produces a controlling magnetic field which configures a magnetic flux return path for the field coils so that the magnetic flux return path describes the said loop, and a support structure which serves rigidly to support the shielding coil means and the field coils.
摘要:
An open electromagnet including a pair of field coils which respectively comprise juxtaposed poles of the electromagnet between which an imaging volume of substantially homogeneous magnetic field is defined, a support structure which serves rigidly to support the field coils in spaced apart relationship, wherein the support structure comprises two steel plates between which the field coils are positioned, the relative position of the field coils and the plates being such, having regard to the magnetic field strength of the electromagnet, that forces of magnetic attraction between the field coils are at least partly counter-balanced by forces of attraction between the plates and the field coils, whereby force on the field coils and their associated support structure due to the forces of attraction between the poles is significantly reduced or nullified.