摘要:
A turbofan engine (10) is provided that includes a spool (14). The spool (14) supports a turbine (18) and is housed within a core nacelle (12). A fan (20) is coupled to the spool (14) and includes a target operability line. The target operability line provides desired fuel consumption, engine performance, and/or fan operability margin. A fan nacelle (34) surrounds the fan (20) and core nacelle (12) to provide a bypass flow path (39) having a nozzle exit area (40). A controller (50) is programmed to command a flow control device (41) for changing the nozzle exit area (40). The change in nozzle exit area (40) achieves the target operability line in response to an engine operating condition that is a function of airspeed and throttle position. A change in the nozzle exit area (40) is used to move the operating line toward a fan stall or flutter boundary by manipulating the fan pressure ratio.
摘要:
A turbofan engine includes core and fan nacelles that provide a bypass flow path having a nozzle exit area. The bypass flow path carries a bypass flow to be expelled from the nozzle exit area. A turbofan is arranged within the fan nacelle and upstream from the core nacelle for generating the bypass flow. A flow control device includes a surface in the bypass flow path including an aperture. The flow device is adapted to introduce a fluid into the bypass flow path for altering a boundary layer of the bypass flow that effectively changes the nozzle exit area. In one example, bleed air is introduced through the aperture. In another example, pulses of fluid from a Helmholz resonator flow through the aperture. By decreasing the boundary layer, the nozzle exit area is effectively increased. By increasing the boundary layer, the nozzle exit area is effectively decreased.
摘要:
A turbofan engine deicing system includes a core nacelle (12) housing a turbine. A turbofan (20) is arranged upstream from the core nacelle. A controller (50) manipulates the turbofan in response to detecting an icing condition for avoiding undesired ice buildup on the turbofan engine (10) and nacelle parts. In one example, a variable area nozzle (40) is actuated to generate pressure pulses or a surge condition to break up any ice buildup. The icing condition can be determined by at least one sensor (52) and/or predicted based upon icing conditions schedules.
摘要:
A turbofan engine (10) is provided that includes a spool (14). The spool (14) supports a turbine (18) and is housed within a core nacelle (12). A fan (20) is coupled to the spool (14) and includes a target operability line. The target operability line provides desired fuel consumption, engine performance, and/or fan operability margin. A fan nacelle (34) surrounds the fan (20) and core nacelle (12) to provide a bypass flow path (39) having a nozzle exit area (40). A controller (50) is programmed to command a flow control device (41) for changing the nozzle exit area (40). The change in nozzle exit area (40) achieves the target operability line in response to an engine operating condition that is a function of airspeed and throttle position. A change in the nozzle exit area (40) is used to move the operating line toward a fan stall or flutter boundary by manipulating the fan pressure ratio.
摘要:
An exhaust section (78) of a gas turbine engine includes an exhaust plug (58), and an exhaust nozzle (60) radially offset from the exhaust plug defining an exhaust pathway (80) between the exhaust plug and the exhaust nozzle. The exhaust plug is configured for axial translation relative to exhaust nozzle between a first position and a second position to selectably change a cross-sectional area of the exhaust pathway during thrust reversal operation of the gas turbine engine to reduce an amount of reverse thrust necessary. A method of operating a gas turbine engine includes actuating a fan thrust reverser (68) to divert a fan airflow (70) from a fan airflow pathway, and translating an exhaust plug from a first position to a second position, thereby increasing a cross-sectional area of an exhaust pathway to reduce an amount of reverse thrust necessary.
摘要:
There is provided an actuation system for a gas turbine engine including a thrust reverser and a variable area fan nozzle. The system has a plurality of linear actuators each having a first outer piston concentric with a second inner piston. The first outer piston is operatively connected to a thrust reverser. The second inner piston is operatively connected to a variable area fan nozzle. The system further has a piston lock assembly for selectively locking the first outer piston to the second inner piston. The system further has a control system coupled to the plurality of linear actuators for operating the variable area fan nozzle between a stowed position and a deployed position.