摘要:
A solar heat exchange panel that includes a lower plate and an upper plate that together define an interior volume containing a flowing heat transfer fluid. The upper plate includes a plurality of upward extensions and downward extensions that cover the top surface of the solar heat transfer panel and are configured to capture solar radiant energy. The lower plate plate includes a plurality of upwardly extending hollow lower plate extensions. The lower plate extensions are aligned with the bottom portions of each upward extension of the upper plate and almost touching. Each of the downward extensions form the upper plate extend down and are joined to the base of the lower plate. In operation, a heat transfer fluid introduced into an inlet on one end of the solar heat transfer panel passes through the defined interior volume and is intimately contacted with the solar heated surfaces extending down into the solar heat transfer panel from the upper plate. A substantially infrared transparent plate across the top surface of the solar heat transfer panel creates a top interior space that encloses a path of flowing air which is simultaneously heated along with the enclosed heat transfer fluid in the lower interior space.
摘要:
Air- and steam-technology combined solar plant for use in the fields of electricity production, process heat, and solar fuels, as well as thermo-chemical processes, produced from the combination of a non-pressurised-air solar receptor, a saturated-steam solar receptor and a heat exchanger separate from the solar input that is used to produce overheated steam.
摘要:
A CSP system is disclosed which couples a thermal and a chemical energy pathway. The thermal pathway utilizes a heat transfer fluid to collect concentrated sunlight as thermal energy at medium temperature and transfer this energy to a thermal-to-electric power cycle. In parallel, the chemical pathway uses a redox material which undergoes direct photoreduction in the receiver to store the solar energy as chemical potential. This redox material is then oxidized at very high temperatures in the power cycle in series with the thermal pathway heat exchanger. This coupling allows the receiver to perform at the high efficiencies typical of state of the art thermal power towers while simultaneously achieving the power cycle efficiencies typical of natural gas combustion plants and achieving a very high overall solar-to-electric conversion efficiency.
摘要:
The invention relates to a panel-based solar receiver for a thermal solar tower power plant (4), which comprises: a front panel (8), the external surface of which receives solar radiation (2) from the field of heliostats (3), a back panel (9), sealing elements (10) between the panels (8, 9), arranged at the lateral ends of both, an intake collector (5), located in the upper part of the panels (8, 9), where the heat transfer fluid enters the receiver (1) and an evacuation collector (6), located in the lower part of the panels (8, 9), where the heat transfer fluid leaves the receiver (1); wherein the front panel (8), back panel (9) and the two sealing elements (10) form the receiver body (16), which constitutes a passage for the heat transfer fluid (7) to travel through. Each solar tower can contain one or several panel-based receivers (1) and be arranged in series or in parallel, with the same or a different fluid (7) circulating there through.
摘要:
The present invention discloses a solar array cell (15) able to be used both thermally and photovoltaically, together with an array ( 3 ) formed from a plurality of the cells ( 15 ). A solar energy system for a building which incorporates the array ( 3 ) is also disclosed. Each cell ( 15 ) is formed from an air duct ( 16 ) of parallelogram cross-sectional shape which makes for easy sealing between ducts and a reliable water shedding arrangement for the cells of the array. An air/liquid heat exchanger ( 35 ) for a solar hot water supply is also disclosed.