摘要:
Die Erfindung betrifft ein Projektionsobjektiv für die Projektion digitaler Bilddaten. Dieses Projektionsobjektiv kann in einem optischen System verwendet werden. Hauptanwendungsgebiet der Erfindung ist die digitale Kinoprojektion, bei der üblicherweise das Breitwand-Format 1,9:1 bzw. das Cinemascope-Format 2,37:1 (Breite:Höhe) angewendet werden. Das erfindungsgemäße Projektionsobjektiv hat günstigere optische Eigenschaften als die herkömmlichen Zoom-Objektive, wie einen minimalen Farbquerfehler, eine hohe Telezentrie, sehr geringe Verzerrungen und ein geringes Volumen und Gewicht.
摘要:
In a FLIR/laser based targeting and imaging system, the ability to recognize, detect, locate, and/or track targets in an area of interest is significantly improved by reducing the fixed and dynamic alignment errors between the IR LOS and the laser LOS. Fixed alignment errors are reduced with an improved internal boresight module and corresponding boresight method. Dynamic alignment errors are reduced with an opto-electric subsystem that employs a single pitch bearing and a common pitch/yaw afocal for both the laser energy and the IR energy. A segmented window in the system housing includes a circular EMI grid pattern which significantly reduces the amount of off-axis EMI entering the optical pathways, and improved signal processing techniques are employed to enhance the quality of the IR image after the image has been digitized.
摘要:
Le dispositif de calibration pour caméra thermique comprend au moins une optique d'imagerie permettant de former l'image d'une scène sur un détecteur (12) à matrice bidimensionnelle de sites photosensibles à travers un diaphragme d'ouverture (14). Le dispositif comprend une optique de calibration interposable sur le trajet lumineux en amont du détecteur et prévue pour que l'image de la scène se forme alors au niveau du diaphragme d'ouverture.
摘要:
A video microscopy system for displaying a 3D image on a monitor by magnifying a portion that is not easily visually observed or a portion that is generally out of visual reach. The 3D image is displayed on the monitor such that the object can be more realistically observed. The 3D video microscopy system can display the object flat without distortion by focusing the image using an achromatic prism, clearly display the object by removing chromatic aberration, and adjust the convergence angle and the degree of magnification of the object in a simple manner. The 3D video microscopy system includes a pair of image sensors, an achromatic prism focusing an image of an object on the image sensors by removing chromatic aberration thereof, and a pair of magnifying lenses transferring the image of the object that has passed through the achromatic prism to the image sensors by a predetermined ratio.
摘要:
A video microscopy system for displaying a 3D image on a monitor by magnifying a portion that is not easily visually observed or a portion that is generally out of visual reach. The 3D image is displayed on the monitor such that the object can be more realistically observed. The 3D video microscopy system can display the object flat without distortion by focusing the image using an achromatic prism, clearly display the object by removing chromatic aberration, and adjust the convergence angle and the degree of magnification of the object in a simple manner. The 3D video microscopy system includes a pair of image sensors, an achromatic prism focusing an image of an object on the image sensors by removing chromatic aberration thereof, and a pair of magnifying lenses transferring the image of the object that has passed through the achromatic prism to the image sensors by a predetermined ratio.
摘要:
Various embodiments provide an optical system including a first lens group including a plurality of lenses, the first lens group being configured to correct for lateral chromatic aberration; and a second lens group including a plurality of lenses, the second lens group being configured to correct for axial chromatic aberration, the second lens group being disposed adjacent the first lens group. The optical system further includes a detector disposed behind the second lens group; a mechanism for switching a configuration of the optical system between a narrow field of view (NFOV) configuration and a wide field of view (WFOV) configuration; and a ray path steering system disposed in front of the first lens group, the ray path steering system comprising a pair of counter-rotating grisms configured to enhance a field of regard of the optical system. The optical system also includes a stabilization system configured to suppress image jitter, the stabilization system including a mechanism for decentering at least one lens in the first lens group or in the second lens group orthogonal to an optical axis of the optical system. A pupil of the optical system is located external to the first and second lens groups for location of a cold shield within a cryo-vac Dewar enclosing the detector.