摘要:
Techniques described herein distinguished between global transactions in a session managed by a transaction manager, and those in the same session that are managed by the resource manager using the optimizations. The techniques provide a guaranteed commit outcome when the commit is managed by the resource manager, or when a transaction manager is managing the transaction. Switching between the different techniques to provide a guaranteed outcome occurs in a safe, performing, and silent manner, based on who controls the current transaction in a session. The solution includes one-phase processing, read only optimizations, and promotable transactions.
摘要:
The present invention relates to computer communications technologies, and in particular, to a server and a data processing method, so that transaction management is implemented in a cloud service scenario simply. A second data server provided in embodiments of the present invention is connected to an application server and a cloud first data server, and receives a first operation request that is used to request a first persistence layer service provided by the first data server and that is sent by the application server, where the request includes at least one operation that belongs to a same transaction. A transaction management module of the second data server performs the at least one operation on second data in the second data server, where the second data is the same as first data in the first data server. If each operation is performed successfully, a second operation request is generated, so as to request to perform the at least one operation on the first data, and the second operation request is sent to the first data server. A persistence layer service that has a transaction management function is provided between an application service and a cloud service, so that the application service does not need to implement transaction management, thereby reducing complexity of the application service.
摘要:
In one embodiment, a system for implementing a distributed, transactional key-value store is provided. The system includes a set of nodes, where each node is communicatively coupled with one or more storage devices storing a set of data log files, and where each data log file including key-value pairs for a key namespace. Each node is configured to execute, using a transaction log file specific to the node, transactions for modifying or retrieving key-value pairs in the set of data log files, where the transaction log file includes state information for the transactions. The transactions are executed in a manner that ensures the atomicity and durability of each transaction.
摘要:
A method for performing a transaction in a massively parallel processing (MPP) database includes receiving, by a transaction manager, from a first resource manager, a first snapshot of the first resource manager and receiving, by the transaction manager, from a second resource manager, a second snapshot of the second resource manager. Also, the method includes reconciling the first snapshot of the first resource manager and the second snapshot of the second resource manager to generate a reconciled snapshot and transmitting, by the transaction manager, to the first resource manager and the second resource manager, the reconciled snapshot. Additionally, the method includes performing a transaction using the reconciled snapshot.
摘要:
Data synchronization includes establishing a plurality of target data tables based on a source data table in which data to be synchronized is stored, determining a current target data table from the plurality of target data tables, synchronizing the source data table and the current target data table, and directing an application server to access the current target data table upon successful completion of synchronization.
摘要:
Repairing GPS data is disclosed. Repairing GPS data includes repairing an effort, comprising determining that the effort includes inaccurate GPS data; and adjusting the effort using a repaired base map. Repairing GPs data includes repairing a segment, comprising determining an inaccurate shape data in the segment; and adjusting shape data for the segment based on a repaired base.
摘要:
A method and system for building a point-in-time snapshot of an eventually-consistent data store. The data store includes key-value pairs stored on a plurality of storage nodes. In one embodiment, the data store is implemented as an Apache® Cassandra database running in the "cloud." The data store includes a journaling mechanism that stores journals (i.e., inconsistent snapshots) of the data store on each node at various intervals. In Cassandra, these snapshots are sorted string tables that may be copied to a back-up storage location. A cluster of processing nodes may retrieve and resolve the inconsistent snapshots to generate a point-in-time snapshot of the data store corresponding to a lagging consistency point. In addition, the point-in-time snapshot may be updated as any new inconsistent snapshots are generated by the data store such that the lagging consistency point associated with the updated point-in-time snapshot is more recent.