摘要:
A fusion reactor includes an enclosure having a first end, a second end, and a midpoint substantially equidistant between the first and second ends of the enclosure. The fusion reactor includes two internal magnetic coils suspended within the enclosure and positioned on opposite sides of the midpoint of the enclosure, one or more encapsulating magnetic coils positioned on each side of the midpoint of the enclosure, two mirror magnetic coils positioned on opposite sides of the midpoint of the enclosure, and one or more cooling lines within each of the internal magnetic coils. The cooling lines carry a coolant and are operable to remove heat from the internal magnetic coils. The one or more encapsulating magnetic coils and the two mirror magnetic coils are coaxial with the internal magnetic coils. The magnetic coils are operable, when supplied with electric currents, to form magnetic fields for confining plasma within the enclosure.
摘要:
The present disclosure provides a method that facilitates the formation and maintenance of new High Performance Field Reversed Configurations (FRCs). The method comprises generating a magnetic field with a magnetic system coupled to a confinement chamber, diametrically opposed FRC formation sections, and divertors; gettering the confinement chamber and the divertors with a layer of gettering material; generating an FRC in each of the formation sections; and translating each FRC toward a midplane of the confinement chamber where the FRCs merge into a merged FRC. The method further comprises injecting neutral atom beams into the merged FRC from neutral atom beam injectors; injecting plasma into the merged FRC from axial plasma guns; and electrically biasing open flux surfaces of the merged FRC with one or more biasing electrodes.
摘要:
A fusion reactor includes an enclosure having a first end, a second end, and a midpoint substantially equidistant between the first and second ends of the enclosure. The fusion reactor includes two internal magnetic coils suspended within the enclosure and positioned on opposite sides of the midpoint of the enclosure, one or more encapsulating magnetic coils positioned on each side of the midpoint of the enclosure, two mirror magnetic coils positioned on opposite sides of the midpoint of the enclosure, and one or more cooling lines within each of the internal magnetic coils. The cooling lines carry a coolant and are operable to remove heat from the internal magnetic coils. The one or more encapsulating magnetic coils and the two mirror magnetic coils are coaxial with the internal magnetic coils. The magnetic coils are operable, when supplied with electric currents, to form magnetic fields for confining plasma within the enclosure.
摘要:
A system and apparatus for controlled fusion in a field reversed configuration (FRC) magnetic topology and conversion of fusion product energies directly to electric power. Preferably, plasma ions are magnetically confined in the FRC while plasma electrons are electrostatically confined in a deep energy well, created by tuning an externally applied magnetic field. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by the nuclear force, thus forming fusion products that emerge in the form of an annular beam. Energy is removed from the fusion product ions as they spiral past electrodes of an inverse cyclotron converter. Advantageously, the fusion fuel plasmas that can be used with the present confinement and energy conversion system include advanced (aneutronic) fuels.
摘要:
Ionized boron and protons are used as nuclear reactants in a field-reversed configuration system, and fused to yield three alpha particles with kinetic energy convertible to useful energy. The boron and proton beams are injected from injectors (32 and 34) respectively, into the reaction chamber (12) in such a manner as to have a relative energy of 0.65 MeV, corresponding to a resonance maximum in the reaction cross section. The boron beam has energy of 0.412 MeV and the proton beam has energy of 1 MeV. Furthermore, in the device of the invention, the beams tend to circulate in the same direction, thereby avoiding rapid change in the mean velocities of the beams due to ion-ion scattering. The ions remain confined for relatively long periods, enhancing fusion collisions. Both ion beams should not have temperatures greater than 100 keV, because this will detract from the resonance in cross section.
摘要:
Systems and methods to that facilitate stability of an FRC plasma in both radial and axial directions and axial position control of an FRC plasma along the symmetry axis of an FRC plasma chamber. The systems and methods exploit an axially unstable equilibria of the FRC to enforce radial stability, while stabilizing or controlling the axial instability. The systems and methods provide feedback control of the FRC plasma axial position independent of the stability properties of the plasma equilibrium by acting on the voltages applied to a set of external coils concentric with the plasma and using a non-linear control technique.
摘要:
A high performance field reversed configuration (FRC) system includes a central confinement vessel, two diametrically opposed reversed-field-theta-pinch formation sections coupled to the vessel, and two divertor chambers coupled to the formation sections. A magnetic system includes quasi-dc coils axially positioned along the FRC system components, quasi-dc mirror coils between the confinement chamber and the formation sections, and mirror plugs between the formation sections and the divertors. The formation sections include modular pulsed power formation systems enabling static and dynamic formation and acceleration of the FRCs. The FRC system further includes neutral atom beam injectors, pellet injectors, gettering systems, axial plasma guns and flux surface biasing electrodes. The beam injectors are preferably angled toward the midplane of the chamber. In operation, FRC plasma parameters including plasma thermal energy, total particle numbers, radius and trapped magnetic flux, are sustainable at or about a constant value without decay during neutral beam injection.
摘要:
A high performance field reversed configuration (FRC) system includes a central confinement vessel, two diametrically opposed reversed-field-theta-pinch formation sections coupled to the vessel, and two divertor chambers coupled to the formation sections. A magnetic system includes quasi-dc coils axially positioned along the FRC system components, quasi-dc mirror coils between the confinement chamber and the formation sections, and mirror plugs between the formation sections and the divertors. The formation sections include modular pulsed power formation systems enabling static and dynamic formation and acceleration of the FRCs. The FRC system further includes neutral atom beam injectors, pellet injectors, gettering systems, axial plasma guns and flux surface biasing electrodes. The beam injectors are preferably angled toward the midplane of the chamber. In operation, FRC plasma parameters including plasma thermal energy, total particle numbers, radius and trapped magnetic flux, are sustainable at or about a constant value without decay during neutral beam injection.
摘要:
A fusion reactor includes an enclosure having a first end, a second end opposite the first end, and a midpoint substantially equidistant between the first and second ends of the enclosure. The fusion reactor includes two internal magnetic coils suspended within the enclosure and positioned on opposite sides of the midpoint of the enclosure, one or more encapsulating magnetic coils positioned on each side of the midpoint of the enclosure, two mirror magnetic coils positioned on opposite sides of the midpoint of the enclosure, and one or more support stalks for supporting the two internal magnetic coils suspended within the enclosure. The one or more encapsulating magnetic coils and the two mirror magnetic coils are coaxial with the internal magnetic coils. The magnetic coils are operable, when supplied with electric currents, to form magnetic fields for confining plasma within the enclosure.