Abstract:
In general, this disclosure described techniques for pruning a list of motion vector prediction candidates based on picture order count (POC) values. A video coding device may be configured to generate the list of motion vector prediction candidates for a prediction unit (PU) of video data. The video coding device may prune a first motion vector prediction candidate from the list of motion vector prediction candidates when a POC value for a reference picture identified by the first motion vector prediction candidate is equal to a second POC value of a reference picture identified by a second motion vector prediction candidate in the list of motion vector prediction candidates. The video coding device may code the PU using the pruned list.
Abstract:
An image coding method includes: adding, to a candidate list, a first adjacent motion vector as a candidate for a predicted motion vector to be used for coding the current motion vector (S701); selecting the predicted motion vector from the candidate list (S702); and coding the current motion vector (S703), wherein in the adding (S701), the first adjacent motion vector indicating a position in a first reference picture included in a first reference picture list is added to the candidate list for the current motion vector indicating a position in a second reference picture included in a second reference picture list.
Abstract:
A system and method for encoding a first picture sequence and a second picture sequence into coded pictures, with the first picture sequence and the second picture sequence being different, and with at least one coded picture of the second picture sequence being predicted from at least one picture in the first picture sequence. According to various embodiments of the present invention, signal element is encoded into a coded picture of the second picture sequence. The signal element indicates whether a picture in the first picture sequence is used for prediction of the coded picture of the second picture sequence.
Abstract:
Innovations for signaling state of a decoded picture buffer (“DPB”) and reference picture lists (“RPLs”). In example implementations, rather than rely on internal state of a decoder to manage and update DPB and RPLs, state information about the DPB and RPLs is explicitly signaled. This permits a decoder to determine which pictures are expected to be available for reference from the signaled state information. For example, an encoder determines state information that identifies which pictures are available for use as reference pictures (optionally considering feedback information from a decoder about which pictures are available). The encoder sets syntax elements that represent the state information. In doing so, the encoder sets identifying information for a long-term reference picture (“LTRP”), where the identifying information is a value of picture order count least significant bits for the LTRB. The encoder then outputs the syntax elements as part of a bitstream.
Abstract:
The present application relates to a method for coding a moving picture in a moving picture coding system using multiple reference picture. According to the method for coding an interlaced moving picture into a frame picture having frame/field macroblock, a reference picture index of the frame macroblock is determined at a macroblock level by determining the reference picture index of frame unit at a picture (or slice) level and respectively allocating a lower index and a higher index to a top reference field and a bottom reference field while sequentially visiting the reference frames according to an order of reference picture index of frame unit, the top and bottom field indexes being giving by an equation: top reference field index = 2 × picture index of reference frame; and bottom reference field index = 2 × picture index of reference frame + 1.
Abstract:
According to a picture coding method of the present invention, a coded picture identified by a picture number is stored, as a reference picture, into a storage unit; commands indicating correspondence between picture numbers and reference indices for designating reference pictures and coefficients used for generation of predictive images are generated; a reference picture being used when motion compensation is performed on a current block in a current picture to be coded is designated by a reference index; a predictive image is generated by performing linear prediction on a block being obtained by motion estimation within the designated reference picture, by use of a coefficient corresponding to the reference index; a coded image signal including a coded signal obtained by coding a prediction error being a difference between the current block in the current picture to be coded and the predictive image, the commands, the reference index and the coefficient is outputted. At that time, information indicating the maximum reference index value is coded and included into the coded image signal, and the commands indicating correspondence between at least one picture number and a plurality of reference indices are generated.
Abstract:
Disclosed herein are innovations for bitstreams having clean random access (CRA) pictures and/or other types of random access point (RAP) pictures. New type definitions and strategic constraints on types of RAP pictures can simplify mapping of units of elementary video stream data to a container format. Such innovations can help improve the ability for video coding systems to more flexibly perform adaptive video delivery, production editing, commercial insertion, and the like.
Abstract:
In one aspect of this disclosure, rounding adjustments to bi-directional predictive data may be purposely eliminated to provide predictive data that lacks any rounding bias. In this case, rounded and unrounded predictive data may both be considered in a rate-distortion analysis to identify the best data for prediction of a given video block. In another aspect of this disclosure, techniques are described for selecting among default weighted prediction, implicit weighted prediction, and explicit weighted prediction. In this context, techniques are also described for adding offset to prediction data, e.g., using the format of explicit weighted prediction to allow for offsets to predictive data that is otherwise determined by implicit or default weighted prediction.