Abstract:
The disclosure relates to an audio signal processing apparatus for processing an input audio signal, comprising a filter unit comprising a plurality of filters, each filter configured to filter the input audio signal to obtain a plurality of filtered audio signals, each filter designed according to an extended mode matching beamforming applied to a surface of a half revolution, the surface partially characterizing a loudspeaker enclosure shape, a plurality of scaling units, each scaling unit configured to scale the plurality of filtered audio signals using a plurality of gain coefficients to obtain a plurality of scaled filtered audio signals, and a plurality of adders, each adder configured to combine the plurality of scaled filtered audio signals, thereby providing an output audio signal for producing a sound field having a beam directivity pattern defined by the plurality of gain coefficients.
Abstract:
A directional loudspeaker provides an enhanced listening environment by producing an indirect sound field of greater amplitude than that of the direct sound field. The directional loudspeaker includes loudspeaker elements positioned to provide a listener located below the loudspeaker elements with an impression of sound spaciousness in a vehicle environment. The loudspeaker elements may include baffles or acoustic lenses to deflect the indirect field away from the path to the listener position. The loudspeaker may also be operated with windows open by channeling the indirect sound field through an acoustic waveguide and deflector to the listener. A sound processor is also provided to accept a sound input, create an indirect and direct sound field, output the sound fields to loudspeaker elements, and also may provide electronic enhancement effects such as multi-channel sound or sound parameter adjustment.
Abstract:
A loudspeaker assembly is disclosed for use in a loudspeaker system having infinite baffle topology. The assembly comprises a driver including a cone and a basket and at least one Helmholtz resonator including a chamber and a vent duct communicating with the chamber and adapted to pass through the infinite baffle. The chamber is dimensioned to provide a tuned frequency well above an operating band associated with the driver. The cross sectional area and length of the vent duct may be set to provide control over duct air noise and low frequency extension. A method of tuning a loudspeaker assembly for use in a loudspeaker system having infinite baffle topology is also disclosed.
Abstract:
A loudspeaker assembly is disclosed for use in a loudspeaker system having infinite baffle topology. The assembly comprises a driver including a cone and a basket and at least one Helmholtz resonator including a chamber and a vent duct communicating with the chamber and adapted to pass through the infinite baffle. The chamber is dimensioned to provide a tuned frequency well above an operating band associated with the driver. The cross sectional area and length of the vent duct may be set to provide control over duct air noise and low frequency extension. A method of tuning a loudspeaker assembly for use in a loudspeaker system having infinite baffle topology is also disclosed.
Abstract:
A display unit (1) includes a transparent plate (11) and a display body. The transparent plate has a first surface and a second surface that are opposite to each other, and is disposed to allow substantially an entire region of the first surface to be exposed. The transparent plate has a curved shape that is bent in an arc shape in a first direction. The display body is joined to side of the second surface of the transparent plate to follow the curved shape.
Abstract:
The invention relates in particular to a loudspeaker system for Integration into a wall or ceiling surface, comprising at least one low-frequency loudspeaker (10) and at least one mid-range loudspeaker (11), which is designed as a flat surface loudspeaker and has a front side (12) which is at least partially provided to form a homogeneous surface with the surrounding wall or ceiling surface.