摘要:
Disclosed is a spherical fuel element forming apparatus, comprising a fuel area forming system, a fuel-free area shaping system and a green sphere pressing system connected sequentially. The fuel area forming system is used for evenly mixing a core sphere matrix powder with nuclear fuel particles and then pressing the mixed core sphere matrix powder and nuclear fuel particles into core spheres. The fuel-free area shaping system is used for preparing a spherical fuel element from the core spheres covered by a fuel-free matrix powder. The green sphere pressing system is used for pressing the spherical fuel elements into green spheres. The spherical fuel element forming apparatus is distributed according to a technical process flow line operation, and is compact in structure and convenient to operate. All the devices are connected rationally. The apparatus operation has a good logical relationship and easily realizes automation. Sphere greens after being finally pressed are high in sphericity, fuel element cost is lowered, and the finished product rate is high.
摘要:
An improved method and means for sizing a metal configuration (46) through the application of thermal expansion and contraction of a shaping mandrel (16). The thermally induced changes in the shaping mandrel are produced from within (18) the body of the mandrel, or or externally.
摘要:
A high-uranium-density ATF nuclear fuel pellet and a preparation method therefor. The high-uranium-density ATF nuclear fuel pellet comprises a columnar inner region (10), an isolation layer (20) covering the outer surface of the inner region (10), and a peripheral region (30) covering the isolation layer (20), wherein the inner region (10) is prepared from a nuclear fuel that is resistant to the oxidation of water and water vapor, and a high-uranium-density nuclear fuel; the peripheral area (30) is prepared from a nuclear fuel that is resistant to the oxidation of water and water vapor; and the mass of the high-uranium-density nuclear fuel accounts for 3-50% of the total mass of the inner region (10) and the isolation layer (20). The high-uranium-density ATF nuclear fuel pellet has an increased uranium loading amount and an effectively reduced central temperature, thereby improving the economical efficiency and safety of the operation of a reactor; and the use of the high-uranium-density nuclear fuel in a water-cooled nuclear reactor is realized, and the accident-tolerant capability of the nuclear reactor is improved.
摘要:
A method of manufacturing components made of zirconium-based alloy by combining heat treatment with thermal sizing. The heat treatment includes heating the component to a temperature which initiates the transformation from a hexagonal close-packed crystallographic phase of uniform texture to a body-centered cubic crystallographic phase and then quenching to a quench temperature at a rate which initiates transformation to a hexagonal close-packed crystallographic phase having a texture factor f L = 0.28-0.38. The thermal sizing includes heating the component to a temperature less than the quench temperature, but sufficient to anneal the component, and then cooling. Preferably, the thermal sizing is performed twice: before and after the heat treatment.
摘要:
Nuclear fuel assemblies include non-symmetrical fuel elements with reduced lateral dimensions on their outer lateral sides that facilitate fitting the fuel assembly into the predefined envelope size and guide tube position and pattern of a conventional nuclear reactor. Nuclear fuel assemblies alternatively comprise a mixed grid pattern that positions generally similar fuel elements in a compact arrangement that facilitates fitting of the assembly into the conventional nuclear reactor.
摘要:
A method of manufacturing fuel channels made of zirconium-based alloy by combining heat treatment, warm forming and thermal sizing. Fuel channel strip material is heated to a temperature which initiates the transformation from a hexagonal close-packed to a body-centered cubic crystallographic phase and then quenched at a rate which initiates transformation to a hexagonal close-packed crystallographic phase having a texture factor f L = 0.28-0.38. The heat-treated strips are formed into fuel channel components by bending at an elevated temperature sufficient to increase the ductility of the strip material. After the fuel channel components are welded together, the fuel channel is annealed by thermal sizing.