SOLID-LIQUID-SOLID HYDROMETALLURGICAL METHOD FOR THE SOLUBILIZATION OF METALS FROM SULFIDE COPPER MINERALS AND/OR CONCENTRATES

    公开(公告)号:EP3882366A1

    公开(公告)日:2021-09-22

    申请号:EP19809914.5

    申请日:2019-10-29

    IPC分类号: C22B3/10 C22B15/00

    摘要: The present invention relates to a solid-liquid-solid hydrometallurgical method in the presence of hydrated and/or non-hydrated salts in an oversaturation conditions, which is achieved by the intentional and repetitive application of drying and wetting steps, enhancing the chemical and physical phenomena on the mineral or concentrate, thus provoking the crystallization, re-crystallization, and release of copper in a nonstoichiometric decomposition of the sulfide and its subsequent precipitation with chloride. The invention is made up of 3 steps called: (a) Wetting, (b) Drying and Oversaturation, (c) Washing and re-wetting, and these are conducted at temperatures ranging from 20-40°C regardless of the redox potential with a minimum consumption of water and acid without requiring the addition of oxygen. The method allows diminishing the water and acid consumption, since the transformation of the sulfide can be carried out only in the presence of hydrated salts and/or the minimal addition of acid and water. Furthermore, the present invention allows reducing the use of water in the agglomeration and/or agglomeration-curing step, as when the hydrated salt is mixed with the mineral, the water molecules of the hydrated salt wet the mineral, reducing the volume of water that shall be added in the steps of wetting and agglomeration and/or curing.
    The method of the present invention can also be applied to sulfide base metals such as nickel, zinc, cobalt, lead, molybdenum, among others, regardless of usual impurities of the sulfide minerals as occurs in the presence of arsenic.

    SOLID-LIQUID-SOLID METHOD FOR THE SOLUBILISATION OF COPPER MINERALS AND CONCENTRATES, INDEPENDENT OF THE REDOX POTENTIAL AND WITH LOW CONSUMPTION OF WATER AND ACID

    公开(公告)号:EP3882365A1

    公开(公告)日:2021-09-22

    申请号:EP18830301.0

    申请日:2018-11-14

    IPC分类号: C22B3/10 C22B15/00

    摘要: The present invention relates to a chemical and physical hydrometallurgical method with solid-liquid-solid interaction for the solubilization of copper sulphides, by Selective Transformation and Precipitation of soluble, chlorinated, copper species, where said method does not depend on the redox potential and can be carried out in a wide range of pH under conditions of salts supersaturation, which is a condition that is generated by periods of non-irrigation, from ores or copper concentrates, mainly primary sulphides, such as chalcopyrite comprising said copper. This method is composed of 3 steps, called "Moistening and Solvation Step", "Selective Transformation and Precipitation Step" and" Acid-Chlorinated Washing step", wherein said method does neither require the addition of oxidizing or reducing agents, nor oxygen. Furthermore, the steps of the method can be applied only with the presence of water, where acid addition is not required. On the other hand, the repetitions of the steps of the method potentiate the physical effects on the ore or concentrate through the phenomena of haloclasty and crystallization of salts. The invention can also be applied to sulphide base metals such as nickel, zinc, cobalt, lead, molybdenum, among others, independently of the usual impurities of the sulphide ores, as occurs with the presence of arsenic.

    METHOD FOR SEPARATING COPPER, AND NICKEL AND COBALT

    公开(公告)号:EP3730637A1

    公开(公告)日:2020-10-28

    申请号:EP18891691.0

    申请日:2018-11-28

    摘要: Provided is a method for separating copper from nickel and cobalt, which can efficiently and selectively separate copper from nickel and cobalt in a substance containing copper, nickel, and cobalt in a waste lithium ion battery, etc. In this method for separating copper from nickel and cobalt, a substance containing copper, nickel, and cobalt is sulfurated to obtain a sulfide, the obtained sulfide that contains copper, nickel, and cobalt is brought into contact with an acid solution to obtain a solid containing copper and a leachate containing nickel and cobalt. Here, the sulfide preferably contains copper sulfide as a main component, and contains nickel metal and cobalt metal. In addition, when bringing the sulfide into contact with the acid solution, the added amounts of the sulfide and the acid solution are preferably adjusted such that the oxidation-reduction potential of the obtained leachate is maintained at 150 mV or less where a silver/silver chloride electrode is a reference electrode.