-
公开(公告)号:EP3910357B1
公开(公告)日:2024-11-13
申请号:EP21159467.6
申请日:2021-02-26
发明人: KLOMP, Dennis , VERSTEEG, Edwin , SIERO, Jeroen , BORGO, Martino
IPC分类号: G01R33/385 , G01R33/485 , G01R33/561 , G01R33/483 , G01R33/28
-
公开(公告)号:EP3373024B1
公开(公告)日:2024-07-24
申请号:EP17159863.4
申请日:2017-03-08
IPC分类号: G01R33/483 , G01R33/56 , G01R33/54
CPC分类号: G01R33/543 , G01R33/4835 , G01R33/5608
-
公开(公告)号:EP3765863B1
公开(公告)日:2024-05-29
申请号:EP19709496.4
申请日:2019-03-11
IPC分类号: G01R33/54 , G01R33/56 , A61B5/055 , G01R33/50 , G01R33/24 , G01R33/44 , G01R33/48 , G01R33/483 , G01R33/485 , A61N5/10
CPC分类号: G01R33/243 , G01R33/246 , G01R33/443 , G01R33/4828 , G01R33/4838 , G01R33/485 , G01R33/50 , G01R33/543 , G01R33/546 , G01R33/5608 , A61B5/055 , A61N5/1039 , A61N2005/100520130101
-
公开(公告)号:EP4336204A1
公开(公告)日:2024-03-13
申请号:EP22194395.4
申请日:2022-09-07
发明人: PIETSCH, Hubertus , JOST, Gregor , KNOBLOCH, Gesine , SCHÜTZ, Gunnar , KREIS, Felix Karl , LIENERTH, Christian , HAUBOLD, Johannes , HOSCH, René , NENSA, Felix , FORSTING, Michael
摘要: Die vorliegende Erfindung befasst sich mit der Beschleunigung einer MRT-Untersuchung der Leber mit Hilfe eines Modells des maschinellen Lernens. Das Modell des maschinellen Lernens ist konfiguriert und trainiert, eine MRT-Aufnahme einer Leber in der hepatobiliären Phase nach der Applikation eines hepatobiliären Kontrastmittels auf Basis einer oder mehrerer MRT-Aufnahmen, die zu einem Zeitpunkt in einer früheren Phase erzeugt worden sind, vorherzusagen. Gegenstände der vorliegenden Erfindung sind ein Verfahren zum Trainieren des Modells des maschinellen Lernens, ein computerimplementiertes Verfahren zum Vorhersagen der MRT-Aufnahme in der hepatobiliären Phase mittels des trainierten Modells sowie ein Computersystem und ein Computerprogrammprodukt zum Ausführen des Vorhersageverfahrens.
-
公开(公告)号:EP4321889A2
公开(公告)日:2024-02-14
申请号:EP23201486.0
申请日:2013-03-15
IPC分类号: G01R33/483
摘要: The disclosure herein provides methods, systems, and devices for virtually staining biological tissue for enhanced visualization without use of an actual dye or tag by detecting how each pixel of an unstained tissue image changes in waveform after staining with a certain dye(s) and/or tag(s) or other transformation under a certain electromagnetic radiation source, developing a virtual staining transform based on such detection, and applying such virtual staining transform to an unstained biological tissue to virtually stain the tissue.
-
公开(公告)号:EP4314853A1
公开(公告)日:2024-02-07
申请号:EP22714011.8
申请日:2022-03-22
申请人: Universität Bern
发明人: WENG, Guodong , SLOTBOOM, Johannes
IPC分类号: G01R33/485 , G01R33/565 , G01R33/28 , G01R33/483 , G01R33/561 , G01R33/48 , G01R33/46
-
公开(公告)号:EP4287941A1
公开(公告)日:2023-12-13
申请号:EP22749344.2
申请日:2022-02-05
IPC分类号: A61B5/055 , G01R33/483 , G01R33/56
-
公开(公告)号:EP3477326B1
公开(公告)日:2023-12-06
申请号:EP17198122.8
申请日:2017-10-24
IPC分类号: G01R33/567 , G01R33/48 , G01R33/483 , G01R33/561
-
公开(公告)号:EP4202427A1
公开(公告)日:2023-06-28
申请号:EP21217638.2
申请日:2021-12-23
申请人: Orbem GmbH
发明人: Coello Uribe, Jorge Eduardo , Kudielka, Guido , Gómez Damián, Pedro Agustín , Laparidou, Maria , Molina Romero, Miguel
IPC分类号: G01N24/08 , G01R33/56 , G01R33/561 , G06T7/00 , B07C5/344 , G01N33/08 , G01R33/483
摘要: Method for automated non-invasive identification of a predetermined feature in a multitude of industrial samples (102) of a predefined sample type, the method comprising the steps of: a) conveying an industrial sample (102) of the predefined sample type into an MRI scanner (106), b) recording in an MRI measurement for at least one slice or at least a partial volume of the industrial sample undersampled MRI data (300), comprising: - undersampled raw MRI data, comprising a multitude of time dependent signals for different phases, and/or - processed MRI data, obtained from processing undersampled raw MRI data, and c) analysing the undersampled MRI data (300) with an inference module (200) for identifying a predetermined feature of the industrial sample (102) using a machine learning module (204) that is trained for identifying the predetermined feature in industrial samples (102) of the predefined sample type from undersampled MRI data (300), wherein the inference module (200) comprises a memory (202) storing the machine learning module (204) and a processor (206) for controlling the inference module (200), wherein the inference module (200) is configured to provide the undersampled MRI data (300) as an input to the machine learning module (200) and to analyse the undersampled MRI data (300) using the machine learning module (204), wherein the machine learning module (204) is trained for identifying the predetermined feature in industrial samples (102) of the predefined sample type using a training set (302) comprising undersampled MRI data (300) of different training samples of the predefined sample type, wherein a fraction of the training samples comprises the predetermined feature and a fraction of the training samples does not comprise the predetermined feature.
-
公开(公告)号:EP3698156B1
公开(公告)日:2023-04-19
申请号:EP18786332.9
申请日:2018-10-15
IPC分类号: G01R33/561 , G01R33/565 , G01R33/483 , G01R33/56 , G01R33/28
-
-
-
-
-
-
-
-
-