摘要:
Bei elektronischen Einrichtungen zur Erfassung der Blindleistung sind für jede Phase zwei Wandler (WR, RR, WS, RS, WT, RT) vorgesehen, die ausgangsseitig strom- bzw. spannungsproportionale Meßspannungen (U IR , u R , U IS , u s , U IT , U T ) liefern. Zwischen jeweils zwei zusammengehörigen Meßspannungen (U IR , u R ; U IS , u s ; U IT , U T ) wird durch Phasendrehglieder eine zusätzliche Phasenverschiebung von 90° erzeugt. In nachgeschalteten Multipliziergliedern (M, M', M") wird ein blindleistungsproportionales Signal (U 1 , u z , U 3 ) erzeugt. Um Verfälschungen sowohl der Amplitude als auch der Phasendrehung bei Frequenzänderungen weitgehend auszuschließen, ist erfindungsgemäß bei den Eingängen jedes Multipliziergliedes (M, M', M") als Phasendrehglied je ein Allpaß (F1, F2; F1', F2'; F1" F2") vorgeschaltet, wobei bei der Nennfrequenz des speisenden Netzes der eine eine Phasendrehung von +45° und der andere eine Phasendrehung von -45° erzeugt.
摘要:
Des signaux de temps a codage numerique sont utilises pour commander l'emission de signaux de sortie cycliques. Les signaux de temps sont fournis aux entrees d'un premier et d'un second generateur de signaux (14) et (15) respectivement. Un dispositif de reglage (17), reglable par l'utilisateur, gouverne le second generateur de signaux de sortie pour dephaser un groupe de signaux de sortie du second generateur par rapport aux signaux de sortie du premier generateur. Des variantes de construction (15) et (16) du second generateur de signaux de sortie permettent de dephaser soit des groupes d'impulsions soit une impulsion isolee.
摘要:
A calibration circuit and a calibration method for a phase shifter, a phase-shift circuit, a radio frequency transmitting circuit, a radio frequency receiving circuit, a radar sensor and an electronic device are provided. The calibration circuit for the phase shifter includes a phase acquisition circuit (21) and a phase calibration circuit, the phase acquisition circuit (21) is coupled to the phase shifter (10), is configured to acquire a radio frequency signal output by the phase shifter (10), modulate a radio frequency sample signal acquired from the phase shifter (10) using a first baseband signal, down-convert the modulation signal obtained after modulation to a baseband to obtain a second baseband signal containing an actual phase; the phase calibration circuit (22) is coupled to the phase acquisition circuit (21) and configured to acquire the actual phase in the second baseband signal, determine calibration phase information for the phase shifter according to a phase deviation between the actual phase and a preset phase-shift phase, generate a phase-shift control signal according to the calibration phase information and transmit the phase-shift control signal to the phase shifter.
摘要:
A digital phase shifter capable of shifting the phases of data row by steps shorter than the sampling period even though the sampling signal the phase of which is fixed or a clock signal is used. This phase shifter comprises: a memory for storing consecutively time series data sampled at given periods in addresses corresponding to the sampling times; reading means for reading from this memory consecutively the data at sampling times earlier than the current sampling time by a desired period of time in synchronism with the sampling of the time series data; a register for holding several consecutive pieces of data including the latest one with respect to those read from the memory; and means for generating interpolated data in desired divided positions at the sampling intervals of a plurality of pieces of data held in this register by adding weights to the plural pieces of data held in it.
摘要:
A parallel branched N-state design method is used for discrete increment signal processing systems, such as incremental phase shifters and attenuators. These systems are implemented using parallel branched signal processing networks, each with N parallel discrete increment branch circuits (i.e., without being restricted to binary-state networks). In comparison with conventional cascaded binary-state networks, the parallel branched N-state design achieves reduced complexity and insertion loss. An exemplary embodiment of a phase shift system providing 32 phase increments (or states) uses three cascaded phase shift networks -- two quaternary-state networks (Quits 10, 20) and a single binary-state network (Bit 30). The most significant Quit (10) illustrates the N-state design, providing the four most significant phase states (reference, +90°, -180°, -90°) using four switched-line branch circuits (100, 200, 300, 400), each controlled by two PIN diode control elements (D1A/D1B, D2A/D2B, D3A/D3B, D4A/D4B). A parallel branched N-state design for discrete increment systems minimizes insertion loss and complexity by minimizing the total number of cascaded networks, the total number of cascaded branch circuits and the total number of branch control elements.
摘要:
Die Schaltungsanordnung zur Bedämpfung von Leistungspendelungen in Netzen arbeitet mit von Wirk-Istleistungsänderungen abgeleiteten Signalen, die die Generatorerregung beeinflussen. Hierzu wird die zu überwachende Leistung den Eingängen zweier Vektoridentifizierer (Vil, Vi2) mit jeweils einem direkten (A11, A21) und einem phasenverschobenen Ausgang (A12, A22) zugeführt. Die besagten Ausgänge werden über Anpassungsglieder (011, 012, 021, 022) wechselseitig jeweils einem Summierglied (S1, S2) zugeführt und deren Ausgänge über je ein weiteres Anpassungsglied (03, 04) auf ein zusätzliches Summierglied (S3) geschaltet, an dem das mit steigender Pendelfrequenz sich mathematisch positiv ändernde Gesamtsignal erscheint.
摘要:
A phase shifting device is disclosed, comprising an input amplifier (110), a biasing circuit (120), a first output amplifier (130) and a second output amplifier (140) being variable-gain amplifiers, and a quadrature hybrid coupler (150). The input amplifier is connected to an input port (P1) of the coupler, the first output amplifier is connected to a through port (P2) of the coupler, the second output amplifier is connected to a coupled port (P3) of the coupler, and the biasing circuit is connected to an isolated port (P4) of the coupler. Further, the quadrature hybrid coupler is configured to receive, at the input port, an input signal (IN) from the input amplifier, output, at the through port, a through signal (I), receive, at the isolated port, a bias signal from the biasing circuit, and output, at the coupled port, a coupled signal (Q) having a phase differing from a phase of the through signal.