Abstract:
A metal balloon catheter having a main tubular body, a metal balloon proximate a distal end of the main tubular body, a central annulus extending along an entire longitudinal aspect of the catheter for accommodating a guidewire therethrough and an inflation annulus adjacent the central annulus which extends along the longitudinal axis of the main tubular body and terminates in fluid flow communication with an inflation chamber of the metal balloon. The metal balloon catheter may be either unitary integral metal catheter in which the main tubular body and the balloon are fabricated of metal, or it may consist of a polymeric main tubular body and a metal balloon.
Abstract:
The present invention relates to an implantable endoluminal graft comprised of a microporous thin-film covering having a plurality of openings and a structural support element underlying and physically attached to the microporous thin-film covering, the microporous thin-film covering having shape memory properties.
Abstract:
All metal stent grafts and covered stents having either a single structural supporting stent member with concentrically positioned graft members on the luminal and abluminal surfaces of the stent member or a single graft member with concentrically positioned structural supporting stent members on the luminal and abluminal surfaces of the graft member are provided.
Abstract:
An implantable endoluminal device that is fabricated from materials that present a blood or body fluid and tissue contact surface that has controlled heterogeneities in material constitution. An endoluminal stent-graft and web-stent that is made of an monolithic material deposited into a monolayer and etched into regions of structural members and web regions subtending interstitial regions between the structural members. An endoluminal graft is also provided which is made of a biocompatible metal or metal-like material. The endoluminal stent-graft is characterized by having controlled heterogeneities in the stent material along the blood flow surface of the stent and the method of fabricating the stent using vacuum deposition methods.
Abstract:
Implantable drug-releasing medical devices are fabricated of metallic or pseudometallic films of biocompatible materials having a plurality of microperforations passing through the film in a pattern that imparts fabric-like qualities to the device and/or permits the geometric deformation of the medical device. The implantable medical device is preferably fabricated by vacuum deposition of metallic and/or pseudometallic materials into either single or multi-layered structures with the plurality of microperforations either being formed during deposition or after deposition by selective removal of sections of the deposited film. The implantable medical device is suitable for use as endoluminal or surgical grafts and may be used, for example, as vascular grafts, stent-grafts, skin grafts, shunts, bone grafts, surgical patches, non-vascular conduits, valvular leaflets, filters, occlusion membranes, artificial sphincters, tendons and ligaments.