절삭유를 포함하는 NdFeB계 영구자석의 성형 스크랩으로부터 네오디뮴을 선택적으로 침출하는 방법

    公开(公告)号:KR101562007B1

    公开(公告)日:2015-10-20

    申请号:KR1020150027449

    申请日:2015-02-26

    摘要: 본발명은절삭유와섞여서뭉친 NdFeB계영구자석의성형스크랩에서네오디뮴을선택적으로침출하는방법에관한것으로서, 성형스크랩으로부터절삭유를분리하고뭉친성형스크랩을해쇄하는탈지및 해쇄단계; 상기해쇄된성형스크랩을산화배소처리하는산화배소단계; 및상기산화배소처리된성형스크랩을산으로침출시키는침출단계를포함하며, 상기탈지및 해쇄단계가상기성형스크랩을 NaOH 용액에침지하여비누화반응을통해서절삭유를친수화한뒤에상기친수화된절삭유를포함한용액을분리하여수행되는것을특징으로한다. 본발명은, 성형스크랩에함유된절삭유를비누화반응으로친수화함으로써, 뭉쳐서굳어진성형스크랩을해쇄하고절삭유를탈지할수 있는효과가있다. 나아가본 발명은종래에절삭유에의해굳은상태이기때문에재활용이어려웠던절삭유함유성형스크랩을재활용함으로써, 영구자석제조단계에서의경제성을크게높일수 있는뛰어난효과가있다.

    摘要翻译: 本发明涉及从含有切削油的钕铁硼系永久磁铁的成型废料中选择性浸出钕的方法。 该方法包括:将切削油与成型废料分离并将成形废料粉碎成块的脱脂破碎工序; 氧化和焙烧脱脂成型废料的氧化和焙烧步骤; 以及使用酸浸出氧化和烘焙处理的模制废料的浸出步骤。 通过将成型废料浸渍在NaOH溶液中,通过皂化反应来提高切削油的亲水性,分离含有亲水性切削油的溶液来进行脱脂和破碎。 根据本发明,通过皂化反应提高了成型废料中所含的切削油的亲水性, 从而将结合在一起的成型废料粉碎成块,并对切削油进行脱脂。 此外,本发明重复使用由切削油引起的硬化条件而不能使用的切削油的成形废料; 从而大大提高永磁体生产过程中的经济效益。

    우라늄 및 바나듐 분리의 연속회수방법
    2.
    发明授权
    우라늄 및 바나듐 분리의 연속회수방법 有权
    乌黑E E E E E E E E E E E E

    公开(公告)号:KR101303959B1

    公开(公告)日:2013-09-05

    申请号:KR1020130018077

    申请日:2013-02-20

    IPC分类号: C22B60/02 C22B34/20 C22B3/04

    摘要: PURPOSE: A continuous recovery method for the separation of uranium and vanadium is provided to apply an optimal leaching condition, thereby increasing the leaching rates of the uranium and the vanadium from a black slate and efficiently extracting the uranium and the vanadium from the black slate. CONSTITUTION: A continuous recovery method for the separation of uranium and vanadium includes: a step (S10) of crushing and pulverizing a black slate; a step (S20) of primarily leaching the crushed and pulverized black slate; a step (S30) of separating the primarily leached black slate into solid and liquid; a step (S40) of secondarily leaching the separated solid, and then secondarily separating the solid into solid and liquid; a step (S50) of re-leaching the secondarily separated liquid with the crushed and pulverized black slate, and then primarily separating the leached liquid into solid and liquid; a step (S60) of solvent-extracting the uranium from the primarily separated liquid; a step (S70) of washing and stripping a remaining organic solution after solvent-extracting the uranium; a step (S80) of depositing the uranium in a remaining stripping solution after stripping, separating the uranium into solid and liquid, drying a precipitate from the separation of the uranium, and then recovering the uranium; a step (S90) of oxidizing the vanadium from a remaining raffinate after solvent-extracting the uranium, and then solvent-extracting the vanadium; a step (S100) of washing and stripping the remaining organic solution after solvent-extracting the vanadium; and a step (S110) of depositing the vanadium in the remaining stripping solution after stripping, separating the vanadium into solid and liquid, calcining a precipitate from the separation of the vanadium, and then recovering the vanadium. [Reference numerals] (S10) Step of crushing and pulverizing a black slate; (S100) Step of washing and stripping the remaining organic solution; (S110) Step of depositing the vanadium in the remaining stripping solution, separating the vanadium into solid and liquid, calcining a precipitate from the separation of the vanadium, and then recovering the vanadium; (S20) Step of primarily leaching the crushed and pulverized black slate; (S30) Step of separating the primarily leached black slate into solid and liquid; (S40) Step of secondarily leaching the separated solid and then secondarily separating the solid into solid and liquid; (S50) Step of re-leaching the secondarily separated liquid with the crushed and pulverized black slate and then primarily separating the leached liquid into solid and liquid; (S60) Step of solvent-extracting the uranium from the primarily separated liquid; (S70) Step of washing and stripping a remaining organic solution after solvent-extracting the uranium; (S80) Step of depositing the uranium in a remaining stripping solution, separating the uranium into solid and liquid, drying a precipitate, and then recovering the uranium, and then recovering the uranium; (S90) Step of oxidizing the vanadium from a remaining raffinate and then solvent-extracting the vanadium

    摘要翻译: 目的:提供分离铀和钒的连续回收方法,以应用最佳浸出条件,从而从黑色石板提高铀和钒的浸出率,并有效地从黑色石板中提取铀和钒。 构成:分离铀和钒的连续回收方法包括:粉碎和粉碎黑色板岩的步骤(S10); 主要浸出粉碎和粉碎的黑色板岩的步骤(S20) 将主要沥滤的黑色板岩分离成固体和液体的步骤(S30); 二次浸出分离固体的步骤(S40),然后将固体二次分离成固体和液体; 用粉碎和粉碎的黑色石板再次浸出二次分离的液体的步骤(S50),然后主要将浸出的液体分离成固体和液体; 从主要分离的液体中溶剂萃取铀的步骤(S60) 在溶剂萃取铀之后洗涤和汽提剩余的有机溶液的步骤(S70) 在剔除之后将铀沉积在剩余的汽提溶液中的步骤(S80),将铀分离成固体和液体,从分离铀干燥沉淀物,然后回收铀; 在溶剂萃取铀之后,将剩余的残液中的钒进行氧化,然后对钒进行溶剂萃取的工序(S90) 在溶剂提取钒之后洗涤和汽提剩余的有机溶液的步骤(S100); 以及在汽提后将钒沉积在剩余的汽提溶液中的步骤(S110),将钒分离成固体和液体,从分离钒煅烧沉淀物,然后回收钒。 (S10)粉碎粉碎黑色板岩的工序; (S100)洗涤和除去剩余的有机溶液的步骤; (S110)将钒沉积在剩余的汽提溶液中,将钒分离成固体和液体,从钒的分离中煅烧沉淀物,然后回收钒; (S20)主要浸出粉碎和粉碎的黑色板岩的步骤; (S30)将主要浸出的黑色板岩分离成固体和液体的步骤; (S40)二次浸出分离后的固体,然后二次将固体分离成固体和液体的步骤; (S50)将被粉碎和粉碎的黑色石板再次浸出二次分离液体的步骤,然后主要将浸出的液体分离成固体和液体; (S60)从主要分离的液体中溶剂萃取铀的步骤; (S70)溶剂萃取铀后洗涤和汽提剩余的有机溶液的步骤; (S80)将铀沉积在剩余的汽提溶液中,将铀分成固体和液体,干燥沉淀物,然后回收铀,然后回收铀的步骤; (S90)从剩余的残液中氧化钒,然后溶剂萃取钒的步骤

    연속 침출공정을 이용한 흑색 점판암으로부터 우라늄 및 바나듐의 추출방법
    3.
    发明授权
    연속 침출공정을 이용한 흑색 점판암으로부터 우라늄 및 바나듐의 추출방법 有权
    采用顺序浸出法从黑沙提取铀和钒的提取方法

    公开(公告)号:KR101291146B1

    公开(公告)日:2013-08-07

    申请号:KR1020130018076

    申请日:2013-02-20

    IPC分类号: C01G43/00 C01G31/00 B01D11/04

    摘要: PURPOSE: A sampling method of extracting uranium and vanadium is provided to increase leaching rate of vanadium and uranium by using the optimal leaching condition and to effectively extract uranium and vanadium from a black slate. CONSTITUTION: A sampling method of extracting uranium and vanadium with a continuous diffusion process comprises the steps of: (S10) pulverizing and fracturing a black slate with, (S20) firstly leaching the fractured and pulverized black slate, (S30) separating solid from liquid after the first leaching, (S40) secondly leaching the separated solid after the first leaching and secondly separating solid from the liquid, (S50) performing the first leaching of the liquid with the second liquid separation with the pulverized and fractured black slate again and the first liquid separation again, (S60) solvent extracting uranium from the liquid of the first liquid separation and (S70) solvent extracting vanadium after oxidizing vanadium in the remaining raffinate after the solvent extraction of the uranium. [Reference numerals] (S10) Pulverizing and fracturing a black slate; (S20) Firstly leaching the fractured and pulverized black slate; (S30) Firstly separating into solid and liquid after the first leaching; (S40) Secondly separating into solid and liquid after secondly leaching solid from the first solid-liquid separation; (S50) Firstly leaching the liquid separated from the second solid-liquid separation with the pulverized and fractured black slate and firstly separating into solid and liquid; (S60) Solvent extracting uranium from the liquid of the first solid-liquid separation; (S70) Solvent extracting vanadium after oxidizing vanadium in the remaining raffinate after the solvent extraction of the uranium

    摘要翻译: 目的:提取铀和钒的抽样方法,通过使用最佳浸出条件提高钒和铀的浸出率,并从黑色板岩中有效提取铀和钒。 构成:采用连续扩散法提取铀钒的抽样方法包括以下步骤:(S10)粉碎和压裂黑色板岩,(S20)首先浸出破碎和粉碎的黑色石板,(S30)将固体与液体分离 在第一次浸出之后,(S40)第二次浸出第一次浸出后的分离固体,并从液体中分离固体,(S50)再次用粉碎和断裂的黑色石板进行第二次分离的液体的第一次浸出, (S60)溶剂从第一液体分离液中提取铀,(S70)溶剂萃取钒后,在溶剂萃取铀之后,在剩余萃余液中氧化钒后溶剂萃取钒。 (附图标记)(S10)粉碎黑色板岩; (S20)首先浸出破碎和粉碎的黑色石板; (S30)首次浸出后首先分离成固体和液体; (S40)第二次从第一次固液分离后第二次浸出固体,分离成固体和液体; (S50)首先将粉碎和破碎的黑色板岩从第二固液分离液中分离出来,首先分离成固体和液体; (S60)溶剂从第一固液分离液中提取铀; (S70)溶剂萃取铀后,在残留的残液中氧化钒后,溶剂萃取钒

    침상형 탄산세륨으로부터 100 nm 급 크기의 산화세륨 제조방법
    4.
    发明公开
    침상형 탄산세륨으로부터 100 nm 급 크기의 산화세륨 제조방법 有权
    来自碳酸亚乙酯的100N氧化铈的合成方法

    公开(公告)号:KR1020110033393A

    公开(公告)日:2011-03-31

    申请号:KR1020090090877

    申请日:2009-09-25

    IPC分类号: C01F17/00

    摘要: PURPOSE: A method for manufacturing 100nm scale cerium oxide based on needle-shaped cerium carbonate is provided to improve the yield of the cerium oxide by controlling a reaction condition for forming the cerium carbonate. CONSTITUTION: A method for manufacturing a cerium oxide includes the following: 0.4 to 1M cerium chloride aqueous solution is stirred at temperature between 40 and 60 degrees Celsius, and ammonium bicarbonate is added(S110). Needle-shaped cerium carbonate is obtained by separating solid and liquid from the resultant of the cerium chloride aqueous solution and the ammonium bicarbonate(S120). The needle-shaped cerium carbonate is plasticized at temperature between 600 and 700 degrees Celsius to obtain needle-shaped cerium oxide(S130). Polyacrylic acid and 0.5 to 1M ammonia water are added to the needle-shaped cerium oxide to obtain cerium oxide grains, the average grain size of which is between 80 and 100nm.

    摘要翻译: 目的:提供一种制造基于针状碳酸铈的100nm氧化铈的方法,通过控制形成碳酸铈的反应条件来提高氧化铈的产率。 构成:制造氧化铈的方法包括:将0.4〜1M氯化铈水溶液在40〜60℃的温度下搅拌,加入碳酸氢铵(S110)。 通过从氯化铈水溶液和碳酸氢铵的产物中分离固体和液体而获得针状碳酸铈(S120)。 针状碳酸铈在600-700℃的温度下增塑,得到针状氧化铈(S130)。 向针状氧化铈中加入聚丙烯酸和0.5〜1M氨水,得到平均粒径为80〜100nm的氧化铈粒子。

    수산화세륨으로부터의 탄산세륨 제조방법
    5.
    发明授权
    수산화세륨으로부터의 탄산세륨 제조방법 有权
    수산화세륨으로부터의탄산세륨제조방법

    公开(公告)号:KR100463799B1

    公开(公告)日:2004-12-29

    申请号:KR1020010085068

    申请日:2001-12-26

    IPC分类号: C22B59/00

    摘要: PURPOSE: A method for preparing cerium carbonate from cerium hydroxide is provided, in which cerium chloride aqueous solution is prepared by using trivalent cerium hydroxide and high purity cerium carbonate is prepared by adding ammonium carbonate to the cerium chloride aqueous solution. CONSTITUTION: The method comprises the steps of forming a cerium chloride aqueous solution by dissolving cerium hydroxide into hydrochloric acid; reducing the cerium chloride aqueous solution by adding hydrogen oxide to the cerium chloride aqueous solution; removing Fe constituent contained in the cerium chloride aqueous solution; and adding ammonium carbonate to the cerium chloride aqueous solution, wherein a part of trivalent cerium hydroxide is oxidized to quadrivalent cerium hydroxide when dissolving the trivalent cerium hydroxide into hydrochloric acid so that cerium hydroxide that is not dissolved into hydrochloric acid is reduced into trivalent cerium hydroxide by adding hydrogen hydroxide to the aqueous solution having an appropriate acidity in the step of forming a cerium chloride aqueous solution by dissolving cerium hydroxide into hydrochloric acid, wherein pH of cerium chloride aqueous solution is maintained to 0.5 to 1.5, and addition amount of hydrogen peroxide is 1.0 to 2.0 equivalents in the step of reducing the cerium chloride aqueous solution by adding hydrogen oxide to the cerium chloride aqueous solution, wherein the step of removing Fe constituent contained in the cerium chloride aqueous solution comprises the steps of slowly adding ammonia water so that cerium is maintained to a uniformed phase that is not coprecipitated by cerium hydroxide, and maintaining pH of the cerium chloride aqueous solution to 2.0 to 4.0, and wherein concentration of cerium chloride of the cerium chloride aqueous solution is 50 to 120 g/L, ammonium carbonate concentration of ammonium carbonate aqueous solution added is 0.5 to 2.0 M, and reaction temperature is 30 to 60 deg.C in the step of adding ammonium carbonate to the cerium chloride aqueous solution.

    摘要翻译: 目的:提供一种由氢氧化铈制备碳酸铈的方法,其中使用三价氢氧化铈制备氯化铈水溶液,并通过向该氯化铈水溶液中加入碳酸铵制备高纯度碳酸铈。 构成:该方法包括以下步骤:通过将氢氧化铈溶解在盐酸中形成氯化铈水溶液; 通过向所述氯化铈水溶液中加入氧化氢来还原所述氯化铈水溶液; 除去氯化铈水溶液中所含的Fe成分; 并向该氯化铈水溶液中加入碳酸铵,其中当将三价氢氧化铈溶解到盐酸中时,部分三价氢氧化铈被氧化成四价氢氧化铈,使得不溶于盐酸的氢氧化铈还原成三价氢氧化铈 在形成氯化铈水溶液的步骤中,通过将氢氧化铈溶解在盐酸中,向其中形成适宜酸度的水溶液中加入氢氧化氢,其中氯化铈水溶液的pH保持在0.5至1.5,并且过氧化氢 在向氯化铈水溶液中添加氢氧化物的还原氯化铈水溶液的工序中,使氯化铈水溶液中所含的Fe成分除去的工序为1.0〜2.0当量, 铈保持到穿制服的p 所述氯化铈水溶液的pH值为2.0〜4.0,所述氯化铈水溶液的氯化铈浓度为50〜120g / L,碳酸铵水溶液的碳酸铵浓度 在向氯化铈水溶液中添加碳酸铵的工序中,添加的溶液为0.5〜2.0M,反应温度为30〜60℃。

    불탄산염 희토류 정광인 bastnasite의 산화배소 및 황산침출용액으로부터 ion-sieve법에 의한 고품위 세륨의 분리회수방법

    公开(公告)号:KR100228057B1

    公开(公告)日:1999-11-01

    申请号:KR1019970034479

    申请日:1997-07-23

    IPC分类号: C22B59/00

    摘要: 본 발명은 불탄산염 희토류 정광인 bastnasite를 산화배소 및 황산침출한 용액중에서 세륨이온과 기타 희토류이온들을 분리, 회수하는 방법에 관한 것으로, 특히 양이온교환수지에 의한 흡탈착하여 분리하는 ion-sieve법에 의해 침출용액중의 희토류이온들과 세륨이온들을 분리하는 방법이다. 이 방법은 4가 세륨 이온의 특성을 이용하는 것인데, 황산침출한 용액중에 적정 착화물을 존재하게 하여 세륨은 착화물과 결합해서 착합음이온을 형성시키고, 다른 희토류원소들은 3가의 양이온으로 잔류시키는 방법이다. 다음에 양이온 교환수지를 이용하여 침출용액중의 희토류 양이온들을 양이온교환수지에 흡착시킴으로써 세륨의 착합음이온을 기타 희토류원소들로부터 분리하는 방법으로서, 종래의 산도조절법과 비교하여 세륨의 분리능이 크고 공정시간이 단축된다는 장점을 가지고 있다.

    용융 환원법을 이용한 희토류 농축 방법
    8.
    发明公开
    용융 환원법을 이용한 희토류 농축 방법 有权
    稀释稀土氧化物的减少工艺

    公开(公告)号:KR1020140064426A

    公开(公告)日:2014-05-28

    申请号:KR1020120131744

    申请日:2012-11-20

    IPC分类号: C22B59/00

    摘要: Disclosed is a method for concentrating rare earth oxides through smelting reduction. The method for concentrating rare earth oxides through smelting reduction includes the steps of: preparing rare earth ores; treating the rare earth ores through the smelting reduction; separating smelting reduction-treated pig iron; and separating slag where rare earth elements are concentrated through the separation of the pig iron. Desirably, the rare earth ores contain a large quantity of iron (Fe). Further, the smelting reduction is conducted according to an equation of reaction: iron oxide + carbon → iron (Fe) + CO and an equation of reaction: iron oxide + CO → iron (Fe) + CO². The smelting reduction is desirably conducted in a reducing atmosphere. Furthermore, upon the smelting reduction, cokes or flux may be further added as a carbonaceous reducer. Desirably, the cokes are added by 1.5 times with respect to a theoretical value needed for iron reduction in the ores, and the flux is added to a quantity of 30% or less with respect to the ores.

    摘要翻译: 公开了通过熔融还原浓缩稀土氧化物的方法。 通过冶炼还原浓缩稀土氧化物的方法包括:制备稀土矿石; 通过冶炼还原处理稀土矿石; 分离冶炼还原处理的生铁; 并通过分离生铁分离稀土元素浓缩的渣。 理想地,稀土矿含有大量的铁(Fe)。 此外,根据反应方程式进行熔炼还原:氧化铁+碳→铁(Fe)+ CO和反应方程式:氧化铁+ CO→铁(Fe)+ CO 2。 熔融还原优选在还原气氛中进行。 此外,在冶炼还原时,可以进一步加入焦炭或助熔剂作为碳质还原剂。 理想地,相对于矿石中的铁还原所需的理论值,将焦炭加入1.5倍,并且相对于矿石将助熔剂加入量为30%以下。

    금속마그네슘 제조를 위한 염화마그네슘 용융염 전해장치
    9.
    发明授权
    금속마그네슘 제조를 위한 염화마그네슘 용융염 전해장치 有权
    熔融镁熔融盐电解设备

    公开(公告)号:KR100988054B1

    公开(公告)日:2010-10-18

    申请号:KR1020080058041

    申请日:2008-06-19

    IPC分类号: C25C7/00 C25C3/04 C25C1/02

    CPC分类号: Y02P10/234

    摘要: 본 발명은 금속마그네슘 제조를 위한 염화마그네슘 용융염 전해장치에 관한 것으로서, 특히 상면이 개방되고 염화마그네슘 전해욕이 저장되며 마그네슘 배출구와 슬러지 배출구와 전해물질 주입구 및 염소가스 배출구가 구비된 본체부와, 상기 본체부의 상면을 밀폐하는 덮개로 이루어진 하우징과; 상기 하우징 본체부의 전후방을 가로질러 소정깊이로 일정간격을 유지하여 설치되는 복수개의 세로격벽과; 상기 하우징 본체부의 좌우측면과 상기 세로격벽 사이에 각각 설치되되 세로격벽과 동일한 깊이로 설치되어 전후방에 원료주입조와 염소가스 발생조를 각각 형성시키는 좌우측 가로격벽과, 상기 세로격벽 사이에 설치되되 상기 세로격벽보다 얕은 깊이로 설치되어 전후방에 마그네슘 회수조와 마그네슘 생성조를 각각 형성시키는 중앙 가로격벽으로 이루어진 가로격벽과; 상기 하우징 본체부의 후면을 관통하여 상기 염소가스 발생조에 설치되는 흑연양극과; 상기 하우징 본체부의 후면을 관통하여 상기 마그네슘 생성조에 설치되는 철음극과, 상기 철음극의 상측에 설치되고 일단이 상기 중앙 가로격벽의 하단에 연결됨과 아울러 타단이 상기 하우징 본체부의 후면과 연결되되 하우징 본체부의 후면을 향하여 하향경사진 생성조 덮개;로 구성되고, 상기 하우징 본체부에 구비된 전해물질 주입구에는 전해원료 주입장치가 연결되고, 상기 전해원료 주입장치는 염화칼슘과 염화나트륨과 염화마그네슘 및 염화칼륨이 각각 저장된 염화칼슘탱크와 염화나트륨탱크와 염화마그네슘탱크 및 염화칼륨탱크로 이루어진 주입탱크와; 상기 주입탱크와 제1스크류 주입장치로 연결되어 염화칼슘과 염화나트륨과 염화마그네슘 및 염화칼륨이 유입되는 혼합탱크와; 상기 혼합탱크와 상기 하우징 본체부에 구비된 전해물질 주입구를 연결하는 제2스크류 주입장치;로 구성되어, 순도 높은 금속마그네슘을 획득할 수 있고 조업의 안정성과 전류효율을 향상시킬 수 있는 효과가 있다.
    전해조, 전해장치, 전해욕, 금속마그네슘, 염화마그네슘, 염소가스