Abstract:
A ferrous alloy powder for additive manufacturing, obtained by atomization with a gas made of at least 95% in volume of nitrogen, the alloy including carbon up to 0.5 wt. %, titanium up to 11.0 wt. %, boron up to 5 wt. %, manganese up to 30 wt. %, aluminium up to 15 wt. %, silicon up to 1.5 wt. %, vanadium up to 0.5 wt. %, copper up to 2 wt. %, niobium up to 2 wt. %, the remainder being iron and residual elements, the powder including endogenous nitrides and/or carbonitrides of at least one element chosen among a group consisting of titanium, aluminium, boron, vanadium, silicon, and niobium, the nitrogen content of such ferrous alloy powder being above the solubility limit of nitrogen in such alloy, at the atomization temperature. A manufacturing method of such powder is also provided.
Abstract:
A method of production of a cold rolled and heat treated steel sheet has the following steps: providing a cold rolled steel sheet with a composition including the following elements, expressed in percent by weight: 0.15%≤carbon≤0.6%, 4%≤manganese≤20%, 5%≤aluminum≤15%, 0≤silicon≤2%, aluminum+ silicon≥6.5%, a remainder being composed of iron and unavoidable impurities caused by processing; heating said cold rolled steel sheet up to a soaking temperature between 80° and 950° C. during less than 600 seconds, then cooling the sheet down to a temperature in a range of 600° C. to room temperature, reheating the steel sheet to a soaking temperature of 150° C. to 600° C. during 10 s to 250 h, then cooling the sheet.
Abstract:
A method for evaluating the hydrogen content in a steel sheet while being submitted to an annealing process, including the following steps: estimating the microstructure of the steel sheet according to the temperature curve, computing the solubility of the hydrogen CH, computing the volume concentration of trapped hydrogen in dislocations CT and the volume concentration of hydrogen in interstitial sites of the crystal lattice CL, calculating the hydrogen content Ctotal=CL+CT at each time step of the annealing process and outputting the hydrogen content Ctotal at each time step to a user.
Abstract:
A steel manufacturing method includes the steps of producing direct reduced iron in a direct reduction plant (1) using a syngas (70) resulting from the gasification of solid waste fuels, producing hot metal (22) and a blast furnace top gas (21) in a blast furnace (2) using a hot blast (20), the blast furnace top gas (21) being at least partly (21A) used into the direct reduction plant (1) and producing molten metal and electric furnace gas in an electric furnace (3) using the produced direct reduced iron (12). Associated network of plants.
Abstract:
A Steel manufacturing method including the step of producing direct reduced iron (12) and a reduction top gas (13) in a direct reduction plant (1) using a reducing gas (11), the reduction top (13) being at least partly (13A) recycled as reducing gas (11), producing hot metal and a blast furnace top gas (21) in a blast furnace (2), wherein from 200 Nm3 to 700 Nm3 of hydrogen (20) per ton of hot metal to be produced are injected and the blast furnace top gas (21A) being at least partly sent to a biochemical plant (4) to produce hydrocarbons and producing molten metal and electric furnace gas in an electric furnace (3) using at least a part of the produced direct reduced iron (12).
Abstract:
A system for estimating both thickness and wear state of refractory material of a metallurgical furnace, including at least one processor including a database of simulated frequency domain data named simulated spectra representing simulated shock waves reflected in simulated refractory materials of known state and thickness, each simulated spectrum being correlated with both known state and thickness data of the considered simulated refractory material, wherein the at least one processor is configured to record a reflected shock wave as a time domain signal, and to convert it into frequency domain data named experimental spectrum, and are further configured to compare the experimental spectrum with at least a plurality of simulated spectra from the database, to determine the best fitting simulated spectrum with the experimental spectrum and to estimate thickness and state of the refractory material of the furnace using known state and thickness data correlated with the best fitting simulated spectrum.
Abstract:
A method for manufacturing iron metal in an apparatus through reduction of iron ore by an electrolysis reaction, the electrolysis reaction generating a gas, the apparatus including at least one casing including a gas permeable anode plate, a cathode plate, both facing each other and being separated by an electrolyte chamber, the cathode and the anode being connected to an electric power supply, the casing being provided with a circulator for circulating an electrolyte within the chamber and with a inlet to supply iron ore to the chamber, the pressure P of the electrolyte within the casing being maintained at a value of at least Plimit and the voltage V applied between the cathode and said anode being maintained at a value of at least Vlimit, the voltage V being always kept at a value strictly below the reduction curve of the electrolyte for the pressure P.
Abstract:
A method for the manufacture of reduced graphene oxide from Kish graphite including the pretreatment of kish graphite, the oxidation of pre-treated kish graphite into graphene oxide and the reduction of graphene oxide into reduced graphene oxide, the reduced graphene oxide and the use of the graphene oxide.
Abstract:
A calibrating bar, for calibrating a multi-roll leveller for metal strips, the calibrating including a first groove on a first face wherein a first optical fibre is embedded by an adhesive, a second groove on a second face, being opposite to the first face, wherein a second optical fibre is embedded by means of an adhesive, the first optical fibre and the second optical fibre including a fibre Bragg grating and being essentially parallel, the first optical fibre and the second optical fibre being located at the same distance from the neutral plane N, the first embedded optical fibre and the second embedded optical fibre being configured such that they can be connected to an optical coupler and such that it has a sufficient length to extend over all the rolls of said multi-roll leveller.