Abstract:
A system for anticipating low-speed bearing failure triggers a notification when a noise generated by the low-speed bearing exceeds a threshold. The system predicts failure far in advance of the actual failure. The system includes an accelerometer for detecting the noise generated by the bearing. The signal produced by the accelerometer is processed using a band pass filter, an amplifier/rectifier, an averaging filter, and a voltage to current converter. The signal and raw data are transmitted to a remote monitoring system, such as a computer. The signal is further analyzed, such as to produce a best-fit line. When the signal exceeds a predetermined threshold, such as when the amount or the slope of the best-fit line exceeds a value, the remote system notifies a monitor to schedule maintenance.
Abstract:
A system for anticipating low-speed bearing failure triggers a notification when a noise generated by the low-speed bearing exceeds a threshold. The system predicts failure far in advance of the actual failure. The system includes an accelerometer for detecting the noise generated by the bearing. The signal produced by the accelerometer is processed using a band pass filter, an amplifier/rectifier, an averaging filter, and a voltage to current converter. The signal and raw data are transmitted to a remote monitoring system, such as a computer. The signal is further analyzed, such as to produce a best-fit line. When the signal exceeds a predetermined threshold, such as when the amount or the slope of the best-fit line exceeds a value, the remote system notifies a monitor to schedule maintenance.
Abstract:
A conveyor belt includes a first link having a first protrusion with a first mating surface that is curved. The first protrusion is disposed proximate a first rod receiving aperture of the first link. The belt also includes a second link having a second protrusion with a second mating surface that is curved. The second protrusion is disposed proximate a second rod receiving aperture of the second link. The first mating surface receives and abuts the second mating surface. The second link is restrained against movement in less than three orthogonal directions relative to the first link due to abutment of the first and second mating surfaces. The first and second rod receiving apertures are aligned when the first and second mating surfaces abut. Additionally, the belt includes a connecting rod extending through the first and second rod receiving apertures.
Abstract:
A sensor assembly for a conveyor belt includes a load cell attachable to a link of a modular conveyor belt and configured to measure tension in the belt and a housing. The housing may include a first cavity configured to receive at least a portion of the load cell, and a second cavity configured to receive one or more electronic components.
Abstract:
A spiral conveyor system may include a cage associated with a motor; a conveyor belt traveling helically about the cage; the cage including a plurality of drive elements formed of vertically oriented cage bars; a cage bar cap mounted on at least one of the cage bars; the cage bar cap including a vertically oriented rib extending radially from a surface of the cage bar cap; wherein the rib includes at least one drive face; wherein the conveyor belt includes at least one belt surface configured to engage the at least one drive face; wherein the cage includes a ring that extends between the terminus of the rib and the entrance end of the cage; wherein the surface of the cage bar cap from which the rib extends defines a first diameter; and wherein the ring has a ring diameter that is larger than the first diameter.
Abstract:
A spiral conveyor system may include a drum and a conveyor belt traveling helically about the drum from an entrance end to an exit end of the drum, and a rib associated with the drum, wherein the rib extends radially from a surface of the drum. A length of the rib extends along the length of the drum from a first end of the rib to a terminus of the rib proximate the entrance end of the drum. In addition, a height of the rib above of the surface of the drum varies along the length of the rib. Further, the rib includes at least one drive face, wherein the conveyor belt includes at least one belt surface configured to engage the at least one drive face, and wherein the drum includes a smooth ribless portion between the terminus of the rib and the entrance end of the drum.
Abstract:
A spiral overlay for a conveyor belt includes a plurality of wire spirals assembled together in intermeshing relationship on connecting rods to provide a conveying surface and an opposing surface with a belt thickness extending in the vertical direction. Each of said wire spirals formed of a single length of wire and forming a helix extending laterally across the belt, said spiral comprising opposed arcuate linking bends at a forward end and a rearward end along the longitudinal axis, and at least one intermediate loop formed between said opposed arcuate linking bends and disposed within the belt thickness, said spirals arranged relative to one another such that said linking bends of one spiral are intermeshed with linking bends of an immediately adjacent one of said spirals and said intermeshed linking bends of adjacent spirals are adapted to receive one of the connecting rods to operatively connect said spirals.