摘要:
An optical transmission system is formed to include an optical phase conjugator at alternate repeater sites to minimize the presence of four-wave mixing and other Kerr effect nonlinearities in systems using optical fiber transmission paths (particularly in systems using DWDM and launching relatively high power signals into the low dispersion fiber). Raman gain is included in each fiber span (or in alternate fiber spans) so as to provide a “negative absorption” along the length of the fiber and thereby provide for essentially symmetrical power distribution along the length of each span, where the presence of such a symmetric,power distribution on each side of an optical phase conjugator has been found to significantly improve its performance.
摘要:
An optical element for simultaneously retrieving the tributary data rate and the clock frequency from the line rate of an OTDM signal. The demultiplexing and clock recovery principle is based on injection locking of a high-Q-filtered and high gain loop with a variable phase delay and an EA-modulator with high non-linear response, i.e., absorption verses applied voltage. A modulator that is preferably an EA-modulator, an amplifier preferably an erbium doped fiber amplifier (“EDFA”), a base band receiver, an electronic amplifier, a high-Q filter, and a variable phase delay are arranged in a loop to provide an oscillator for simultaneously retrieving tributary data rate and clock frequency.
摘要:
An optical translator that includes an interferometer and a plurality of semiconductor optical amplifiers (SOAs) coupled to the interferometer. The at least two of the SOAs receives data and a clock signal. The data is received by the at least two SOAs at different times. A coupler combines each of a respective output of the at least two SOAs to provide output data. The output data is a retimed and a reshaped signal of the data provided to at least one of the plurality of SOAs.
摘要:
A wavelength division multiplex (WDM) cross-connect architecture that can selectively cross-connect, at a wavelength granularity, wavelength channels from any of a plurality of input WDM optical facilities (e.g., fibers) to any of a plurality of output WDM optical facilities. The architecture is based on multi-wavelength modules, which are capable of routing simultaneously N wavelengths. The number of required modules scales only with k2 or less (i.e., k2 modules with N complexity), where k is the number of input/output fibers. The significant reduction in complexity is traded for a decrease in blocking performance; one of the disclosed architectures is strictly non-blocking in the space domain and rearrangeably non-blocking in the wavelength domain, whereas two others are rearrangeably non-blocking in both the wavelength and space domain. Since the wavelength channels are optically multiplexed in the interconnection fibers, only a small number of optical amplifiers are needed to compensate for the inevitable transmission loss in the interconnection fabric.