摘要:
An optical communication terminal transmits data via an optical signal with a transmit mirror positioned to direct the optical signal. The optical communication terminal includes a processor configured to develop a control signal for a mirror controller to establish an optimal position of the transmit mirror. The optical communication terminal further includes a modulator coupled to the processor that modulates the optical signal in accordance with a position of the transmit mirror during transmission of the optical signal. The optimal position of the transmit mirror may be established by a scanning routine that adjusts the position of the transmit mirror to a plurality of predetermined offset positions during transmission of the optical signal. The intensity of the optical signal as received by a further optical communication terminal is then determined and provided via modulation of a further optical signal transmitted back to the first-named optical communication terminal. The predetermined offset positions and the corresponding received intensities may then be utilized to determine the optimal position of the transmit mirror.
摘要:
A transmitter that performs stimulated Brillouin scattering suppression is provided. The transmitter includes a non-linear device having an optical input adapted to receive an optical signal, an amplitude modulation input adapted to receive an amplitude modulation signal, a phase modulation input and an output. The transmitter also includes a stimulated Brillouin scattering (SBS) oscillator/driver having first and second oscillators coupled to the phase modulation input of the non-linear device and an amplifier coupled to the output of the non-linear device. The transmitter further includes a laser coupled to the optical input of the non-linear device.
摘要:
An optical coding system is provided for a data transmission device with at least one laser transmitter and at least one laser receiver. The laser transmitter has a laser device and a code generator, and the laser receiver a detector device and an evaluation circuit. The detector device is designed for detecting a burst sequence (B1, B2, B3, . . . ), wherein the length d of the pulses of a burst is greater than 400 ns, and the length D of a burst consisting of a number b of pulses is less than 1000 &mgr;s.
摘要:
Systems and methods for reliable and low cost optical connection verification. One application is verification and monitoring of optical cross-connect performance. A connection is verified by splitting off optical signals at both ports of the connection, converting the signals to electrical signals, and then cross-correlating to verify connectivity between the ports. Lowpass filtering applied to the electrical signals may be applied to reduce the complexity of the cross-correlation.
摘要:
A circuit for monitoring an optical signal level provided in an optical receiver includes a clock extraction circuit, a noise detection circuit, and an alarm circuit. The clock extraction circuit extracts a clock from an input signal. The noise detection circuit multiplies the clock, utilizes the multiplied clock to identify surge noises included in the input signal, and outputs noise pulses. The alarm circuit counts the noise pulses and outputs an alarm signal when the number of the pulses counted within a certain period reaches a preset value. The surge noise is a noise having a level which is relatively increased as the input signal level is lowered.
摘要:
An optical communication equipment comprises shared optical sources 88a-88d to be shared by communication nodes 100a-100d, the wavelengths of optical signals 76a-76d are converted into desired wavelengths &lgr;a-&lgr;d according to the addressed information of the corresponding optical label signals 77a-77d by using the shared optical sources 88a-88d and routed to the addressed communication nodes without being converted into electrical signals by using the wavelength routing function of the cyclic-wavelength arrayed-waveguide grating (AWG) 120. The load of each communication node can be reduced by incorporating the multi-wavelength optical sources, which can be shared among individual communication nodes, into the router 80. Further, each communication node is provided with an optical gate or the like for returning the optical signal to the communication node from which the optical signal has been transmitted through the router 80 in order to adjust the transmission time lag between the optical signal and the corresponding optical label signal by the controllers 110a-110d.
摘要:
A wireless communication device (10) includes a radio frequency transceiver (22) adapted for burst transmission responsive to a control signal in accordance with at least one communication protocol and an infrared transceiver (24) adapted for asynchronous data communication in coordination. The infrared transceiver (24) is responsive to the control signal to suspend an ongoing data communication for the duration of the burst transmission and to resume the data communication following the burst transmission. A controller (20) is coupled to each of the radio frequency communication module (22) and the infrared communication module (24), and the controller (20) is operable to generate the control signal in accordance with the at least one communication protocol.
摘要:
A hybrid wireless optical and radio frequency (RF) communication link utilizes parallel free-space optical and RF paths for transmitting data and control and status information. The optical link provides the primary path for the data, and the RF link provides a concurrent or backup path for the network data, as well as a reliable and primary path for the control and status information. When atmospheric conditions degrade the optical link to the point at which optical data transmission fails, the hybrid communication link switches to the RF link to maintain availability of data communications. The switch may occur automatically, based on an assessment of the quality of the optical signal communicated through the optical path.
摘要:
An object of this invention is to improve transmission characteristics in WDM transmission. An optical transmitter (10) wavelength-multiplexes signal lights of wavelengths &lgr;1 through &lgr;n and outputs them onto an optical transmission line (12). Optical powers of the signal lights of the respective wavelength &lgr;1 through &lgr;n are identical or become smaller proportional to the wavelength. One repeater span of the optical transmission line (12) is composed of an optical fibers (20, 22) and an optical amplifier (24), and a gain equalizer (26) is dispersed every several repeater spans. The optical amplifier (24) in the repeater span amplifies each signal light so that optical power of a signal on the shorter wavelength side becomes smaller than that of a signal on the longer wavelength side. The gain equalizer (26) equalizes optical powers of the respective signal lights.
摘要:
A device and method for quantifying the amount of jitter experienced by an optical data pulse. During transmission data pulses may suffer jitter. Their arrival time at a node may be temporally offset from its predicted arrival time. Data pulses are timed so that they may be received at a detector disposed downstream of said node at a predetermined time. The device includes an optical AND gate, which has a first input arranged to receive a chirped pulse having a duration T, and whose wavelength varies in a monotonically over the duration of the pulse, the node having a second input arranged to receive a second data pulse. The node includes an optical gate arranged to generate an output pulse in response to the chirped pulse and the data pulse received at the first and second inputs, respectively, having a wavelength dependent upon the time at which the data pulse is received at the second input.