摘要:
In a method for refining a position estimate of a low earth orbiting (LEO) satellite a first position estimate of a LEO satellite is obtained with a GNSS receiver on-board the LEO satellite. The first position estimate is communicated to a Virtual Reference Station (VRS) processor. VRS corrections are received at the LEO satellite, the VRS corrections having been calculated for the first position estimate by the VRS processor. The VRS corrections are processed on-board the LEO satellite such that a VRS corrected LEO satellite position estimate of the LEO satellite is generated for the first position estimate.
摘要:
A circuit for exclusion zone compliance is recited. In one embodiment, the circuit comprises a satellite navigation signal reception component configured for receiving at least one signal from at least one Global Navigation Satellite System satellite and a navigation data deriving component configured for deriving position data and a clock time from the at least one signal. The circuit further comprises a non-volatile memory component configured for storing an encrypted data set describing the boundaries of an exclusion zone and a data blocking component configured for controlling the accessing of the encrypted data set. The circuit further comprises a data control component configured for blocking the output of a signal from the circuit in response an indication selected from the group consisting of: an indication that the circuit is located within an exclusion zone and an indication that output of said signal is not permitted based upon said clock time.
摘要:
In a method for refining a position estimate of a low earth orbiting (LEO) satellite a first position estimate of a LEO satellite is obtained with a GNSS receiver on-board the LEO satellite. The first position estimate is communicated to a Virtual Reference Station (VRS) processor. VRS corrections are received at the LEO satellite, the VRS corrections having been calculated for the first position estimate by the VRS processor. The VRS corrections are processed on-board the LEO satellite such that a VRS corrected LEO satellite position estimate of the LEO satellite is generated for the first position estimate.
摘要:
In a method for refining a position estimate of a low earth orbiting (LEO) satellite a first position estimate of a LEO satellite is obtained with a GNSS receiver on-board the LEO satellite. The first position estimate is communicated to a Virtual Reference Station (VRS) processor. VRS corrections are received at the LEO satellite, the VRS corrections having been calculated for the first position estimate by the VRS processor. The VRS corrections are processed on-board the LEO satellite such that a VRS corrected LEO satellite position estimate of the LEO satellite is generated for the first position estimate.
摘要:
A method for estimating an unknown spreading code in a received signal by using a set of genetic algorithms. The method comprises: selecting at least one seed of the unknown spreading code for initialization purposes, wherein the unknown spreading code comprises a plurality of chips, and performing a breeding process of the unknown spreading code by executing a breeding algorithm.
摘要:
In a method for refining a position estimate of a low earth orbiting (LEO) satellite a first position estimate of a LEO satellite is obtained with a GNSS receiver on-board the LEO satellite. The first position estimate is communicated to a Virtual Reference Station (VRS) processor. VRS corrections are received at the LEO satellite, the VRS corrections having been calculated for the first position estimate by the VRS processor. The VRS corrections are processed on-board the LEO satellite such that a VRS corrected LEO satellite position estimate of the LEO satellite is generated for the first position estimate.
摘要:
A circuit for exclusion zone compliance is recited. In one embodiment, the circuit comprises a satellite navigation signal reception component configured for receiving at least one signal from at least one Global Navigation Satellite System satellite and a navigation data deriving component configured for deriving position data and a clock time from the at least one signal. The circuit further comprises a non-volatile memory component configured for storing an encrypted data set describing the boundaries of an exclusion zone and a data blocking component configured for controlling the accessing of the encrypted data set. The circuit further comprises a data control component configured for blocking the output of a signal from the circuit in response an indication selected from the group consisting of: an indication that the circuit is located within an exclusion zone and an indication that output of said signal is not permitted based upon said clock time.