Abstract:
Provided are a system and method for estimating position of lost mobile terminal and a mobile terminal. The system for estimating position of lost mobile terminal includes a plurality of base stations and a computing apparatus. Each of the base stations transmits an activation signal, receives a terminal ID from the mobile terminal in response to the activation signal, and transmits a reception time of the terminal ID and the terminal ID. The computing apparatus estimates a position of the mobile terminal corresponding to the terminal ID on the basis of the reception time and a position of each of the base stations.
Abstract:
Provided is an apparatus for monitoring a malfunctioning state of a global positioning system (GPS) satellite, the apparatus comprising: an orbit computing unit to compute an orbit of a geostationary satellite; a data receiver to receive GPS data from the GPS satellite; a data correction unit to correct an error in a clock error value of the GPS data; a first computing unit to compute a data pseudorange between the GPS satellite and a base station based on the corrected GPS data; a second computing unit to compute a geographical distance between the GPS satellite and the base station; and a determining unit to determine a malfunctioning state of the GPS satellite by comparing the data pseudorange and the geographical distance.
Abstract:
An apparatus for automatically generating satellite operation procedure (SOP) parameters is provided. The apparatus includes a parameter extraction unit configured to extract one or more SOP parameters corresponding to an SOP; a transformation formula extraction unit configured to extract a transformation formula corresponding to the extracted SOP parameters; and a calculation unit configured to calculate values of the extracted SOP parameters based on property information for performing a satellite task and the extracted transformation formula.
Abstract:
A telemetry data retrieval apparatus and method for post-processing are provided. The telemetry data retrieval apparatus may include a retrieval initiating unit to receive an input of a retrieval time, and to calculate a percentage of the retrieval time during an entire retrieval period, a start position calculating unit to calculate a retrieval start position in which data retrieval is started within a stored file, based on the calculated percentage, and a telemetry data retrieval unit to verify a start pattern and a time tag from the calculated retrieval start position, and to retrieve a position of telemetry data in the stored file.
Abstract:
Provided are a method and system for determining a precise orbit of a LEO satellite. The method includes: estimating a precise ephemeris of a global positioning system (GPS) satellite by fitting an orbit perturbation-based GPS dynamics model to observation data of the GPS satellite received from a GPS observatory and estimating a precise ephemeris of a Galileo satellite by fitting an orbit perturbation-based Galileo dynamics model to observation data of the Galileo satellite received from a Galileo observatory; determining an initial orbit value of a LEO satellite by fitting an orbit perturbation-based LEO satellite's basic dynamics model to navigation data received from the LEO satellite; and determining the precise orbit of the LEO satellite by calculating a difference between observation values, which are calculated based on a GPS and Galileo data received from the LEO satellite, the GPS observatory and the Galileo observatory, and calculated values, which are calculated based on an orbit perturbation-based LEO satellite's dynamics model that was calculated using the initial orbit value of the LEO satellite and the precise ephemeris of the GPS and Galileo satellites. Since both the GPS and Galileo data are received and used to determine the precise orbit of a LEO satellite, more precise orbit determination can be achieved.
Abstract:
Provided is an apparatus for monitoring a malfunctioning state of a global positioning system (GPS) satellite, the apparatus comprising: an orbit computing unit to compute an orbit of a geostationary satellite; a data receiver to receive GPS data from the GPS satellite; a data correction unit to correct an error in a clock error value of the GPS data; a first computing unit to compute a data pseudorange between the GPS satellite and a base station based on the corrected GPS data; a second computing unit to compute a geographical distance between the GPS satellite and the base station; and a determining unit to determine a malfunctioning state of the GPS satellite by comparing the data pseudorange and the geographical distance.
Abstract:
Provided are an apparatus and a method that differently sets the access authority of a user for individual parts of an online document. For every parts of the online document, the user authority is set and the parts are edited only by a user that can access the part. Finally, the parts of the documents are combined as the final document. According to the present invention, the document is divided into parts and the access authority of the user is variously set, which results in maximizing the efficiency of editing the document. The editors of the individual parts inherit the authorities to other people, so that it is very efficient for the cooperative job of a document in the organization having a hierarchy.
Abstract:
A global earth navigation satellite system may be provided. The global earth navigation satellite system may include a group of satellites including at least one inclined geosynchronous satellite disposed in at least one orbital plane distinguished based on an interval determined based on a longitudinal coordinate of the earth, and the at least one inclined geosynchronous satellite may be disposed in the at least one orbital plane at predetermined intervals, and may revolve around the earth at a predetermined inclination of satellite orbit so as to provide, over time, geometric shape change information associated with the earth, geometric shape change information associated with a low earth orbit satellite, and geometric shape change information associated with a geostationary satellite.
Abstract:
A flight dynamics subsystem (FDS), a velocity increment calculation module, and operational methods of the same are provided. A used fuel quantity actually used in a satellite is calculated, and a velocity increment is calculated using the calculated fuel quantity. Therefore, an orbit of the satellite may be estimated more accurately.
Abstract:
A mobile terminal and a speaker device thereof are provided. The mobile terminal includes a fixed body, a moving body coupled to the fixed body and movable in a linear direction relative to the fixed body, and a speaker device fastened to one of a surface of the fixed body at which the moving body is coupled and a surface of the moving body at which the fixed body is coupled for outputting sound, wherein the sound from the speaker device is output in all directions through a gap located between the fixed body and the moving body.