Polycyanurate compositions
    1.
    发明授权
    Polycyanurate compositions 有权
    聚氰脲酸盐组合物

    公开(公告)号:US07462681B1

    公开(公告)日:2008-12-09

    申请号:US11239443

    申请日:2005-09-19

    IPC分类号: C08G64/00 C08G63/02

    摘要: A polycyanurate composition (I), wherein “n” is a positive integer of about 1 to about 10, and wherein R, R′, and R″ comprising at least one of C, H, N, O, F, Si, P, S, Cl, Br, I, and any combination thereof. A method of making a polycyanurate composition (I) including, providing at least one semi-aliphatic polycarbonate (V), wherein R comprises at least one of C, H, N, O, F, Si, P, S, Cl, Br, I, providing at least one uncured reactive thermoset monomer, dissolving the polycarbonate in a solvent with a high vapor pressure or suspending the polycarbonate directly into the reactive monomer, mixing the liquefied polycarbonate with the uncured reactive thermoset monomer into a homogeneous liquid component, curing the liquid component into a viscous component, and exposing the cured component to temperatures of about 50° C. to about 400° C. forming tricyanurate linkages in the polycyanurate composition (I).

    摘要翻译: 一种聚氰尿酸酯组合物(I),其中“n”为约1至约10的正整数,并且其中R,R'和R“包含C,H,N,O,F,Si, P,S,Cl,Br,I及其任何组合。 一种制备聚氰脲酸盐组合物(I)的方法,包括提供至少一种半脂族聚碳酸酯(V),其中R包含C,H,N,O,F,Si,P,S,Cl,Br I提供至少一种未固化的反应性热固性单体,将聚碳酸酯溶解在具有高蒸气压的溶剂中或将聚碳酸酯直接悬浮于反应性单体中,将液化的聚碳酸酯与未固化的反应性热固性单体混合成均匀的液体组分,固化 将液体组分变成粘性组分,并将固化的组分暴露于约50℃至约400℃的温度,在聚氰化脲组合物(I)中形成三氰脲酸酯键。

    Increasing the rate of crystallization of engineering thermoplastics
    3.
    发明授权
    Increasing the rate of crystallization of engineering thermoplastics 有权
    提高工程热塑性塑料的结晶率

    公开(公告)号:US07790841B1

    公开(公告)日:2010-09-07

    申请号:US12079089

    申请日:2008-02-06

    IPC分类号: C08F6/00 C08G64/00

    摘要: Method for enhancing the crystallization rates of engineering thermoplastics through the use and incorporation of particulate additives with dimensions on the order of 10-1000 nm is described. The presence of nanoparticles at concentrations of, e.g., less than 10 weight percent of the composition, reduces the viscosity of the thermoplastics as compared to the respective homopolymer, thereby increasing polymer chain transport and diffusion to the crystallizing growth front. The prescription of this technology has been shown to reduce crystallization half times of some engineering thermoplastics by as much as 40 percent at optimal crystallization temperatures, an effect that is magnified as the temperature is reduced towards the glassy state of the amorphous phase. Nano-modified engineering thermoplastics with rapid crystallization kinetics and relatively low viscosities can be utilized in component fabrication processes that require rapid processing times, e.g., for the sake of cost efficiency.

    摘要翻译: 描述了通过使用和结合尺寸在10-1000nm的颗粒添加剂来提高工程热塑性塑料的结晶速率的方法。 相对于各均聚物,存在的纳米颗粒的浓度例如低于组合物的10重量%,降低了热塑性塑料的粘度,从而增加了聚合物链的转运和扩散到结晶生长前沿。 已经表明,该技术的处方已经证明,在最佳结晶温度下,将一些工程热塑性塑料的结晶半结晶减少多达40%,随着温度朝着非晶相的玻璃状态而减小的效应被放大。 具有快速结晶动力学和相对低粘度的纳米改性工程热塑性塑料可用于需要快速加工时间的部件制造工艺中,例如为了成本效率。