Abstract:
A hollow inner plunger (100) for use within a syringe-in-syringe mixing system for mixing a two-part dental composition. The hollow inner plunger includes a body having a continuous cylindrical wall (102) defining an internal chamber (108) for containing a first component (HOa). The body (100) includes a proximal end (104) and a distal end (106). A sealing plug and rupturable membrane (116) are disposed at the distal end of the body, and the sealing plug and rupturable membrane (116) are integrally formed together as a single piece (e.g., formed of a single piece of elastomeric material). An associated syringe-in-syringe mixing system (124) includes a first plunger (126), the hollow inner plunger (100), and a syringe barrel (128) configured to contain a second component (HOb). When assembled, the first plunger (126) is slidably disposed within the hollow inner plunger (100), and the hollow inner plunger (100) is slidably disposed within the syringe barrel (128). The two components (110a, 110b) are initially separated by the rupturable membrane (116).
Abstract:
A hollow inner plunger for use within a syringe-in-syringe mixing system for mixing a two-part dental composition. The hollow inner plunger includes a body having a continuous cylindrical wall defining an internal chamber for containing a first component. The body includes a proximal end and a distal end. A sealing plug and rupturable membrane are disposed at the distal end of the body, and the sealing plug and rupturable membrane are integrally formed together as a single piece (e.g., formed of a single piece of elastomeric material). An associated syringe-in-syringe mixing system includes a first plunger, the hollow inner plunger as described above, and a syringe barrel configured to contain a second component. When assembled, the first plunger is slidably disposed within the hollow inner plunger, and the hollow inner plunger is slidably disposed within the syringe barrel. The two components are initially separated by the rupturable membrane.
Abstract:
A venting syringe plunger assembly for use with a syringe system allows for venting of gas from the syringe system during use. The plunger assembly includes a hollow outer sleeve having an interior surface, and an inner stem having an exterior surface. At least a portion of the inner stem is disposed within the outer sleeve so as to be movable (e.g., slidable) within the outer sleeve. A venting passageway is defined between the interior surface of the outer sleeve and the exterior surface of the inner stem. The plunger assembly also includes means for selectively moving the inner stem within the outer sleeve so as to selectively open and close the venting passageway.
Abstract:
A hollow inner plunger for use within a syringe-in-syringe mixing system for mixing a two-part dental composition. The hollow inner plunger includes a body having a continuous cylindrical wall defining an internal chamber for containing a first component. The body includes a proximal end and a distal end. A sealing plug and rupturable membrane are disposed at the distal end of the body, and the sealing plug and rupturable membrane are integrally formed together as a single piece (e.g., formed of a single piece of elastomeric material). An associated syringe-in-syringe mixing system includes a first plunger, the hollow inner plunger, and a syringe barrel configured to contain a second component. When assembled, the first plunger is slidably disposed within the hollow inner plunger, and the hollow inner plunger is slidably disposed within the syringe barrel. The two components are initially separated by the rupturable membrane.
Abstract:
A venting syringe plunger assembly for use with a syringe system allows for venting of gas from the syringe system during use. The plunger assembly includes a hollow outer sleeve having an interior surface, and an inner stem having an exterior surface. At least a portion of the inner stem is disposed within the outer sleeve so as to be movable (e.g., slidable) within the outer sleeve. A venting passageway is defined between the interior surface of the outer sleeve and the exterior surface of the inner stem. The plunger assembly also includes means for selectively moving the inner stem within the outer sleeve so as to selectively open and close the venting passageway.
Abstract:
An adjustable gate hinge assembly is fabricated from stamped components and includes a base plate mountable to a gate or door, an inner hinge component slidably adjustable and securable to the base plate with threaded fasteners, an outer hinge component mountable to a fence or wall, first and second pivot plugs which locate the inner hinge component within the outer hinge component, and a rivet which passes through the slot of each pivot plug, thereby retaining them seated within the outer hinge component. The inner hinge component has a tubular member which pivots between a pair of opposed drawn ears on the outer hinge component. Each of the ears has an aperture that is axially aligned with the aperture of the other ear. For a preferred embodiment of the invention, the hinge assembly incorporates a coil spring within the tubular member, which can be loaded to bias the hinge as self-closing or self-opening.
Abstract:
A plunger-barrel apparatus is adapted for use within a syringe-in-syringe mixing system for mixing a two-part composition (e.g., a dental composition). A hollow plunger-barrel body has a continuous cylindrical wall defining an internal chamber for containing a first component. The body includes a plunger receiving end and a dispensing end. An integral sealing plug and rupturable membrane is disposed at the dispensing end of the body and include a sealing plug portion and a rupturable membrane portion that are integrally formed together as a single piece (e.g., formed of a single piece of elastomeric material). An associated syringe-in-syringe mixing system includes a first plunger, the hollow plunger-barrel body as described above adapted to contain a first component, and a syringe barrel configured to contain a second component. When assembled, the first plunger is slidably disposed within the hollow plunger-barrel body, and the plunger-barrel body is slidably disposed within the syringe barrel. The two components are initially separated by the rupturable membrane.
Abstract:
A dental curing light includes a device body that efficiently conducts heat away from the light emitting diode portion of the curing light. The device body includes a proximal gripping end and a distal head end. The device body is formed from a thermally conductive body material. Excellent heat conduction away from the LED dies is achieved using a thermally conductive layer disposed over the device body. The thermally conductive layer serves as a conduit to quickly conduct heat away from the LED dies for dissipation within the material of the device body In this manner, the material of the device body serves as a highly efficient heat dissipater. The surface area coupling the thermally conductive layer to the device body is sufficiently large that a majority (e g, substantially all) of heat being conducted by the thermally conductive layer is transferred to the device body during operation of the device.
Abstract:
A plunger-barrel apparatus is adapted for use within a syringe-in-syringe mixing system for mixing a two-part composition (e.g., a dental composition). A hollow plunger-barrel body has a continuous cylindrical wall defining an internal chamber for containing a first component. The body includes a plunger receiving end and a dispensing end. An integral sealing plug and rupturable membrane is disposed at the dispensing end of the body and include a sealing plug portion and a rupturable membrane portion that are integrally formed together as a single piece (e.g., formed of a single piece of elastomeric material). An associated syringe-in-syringe mixing system includes a first plunger, the hollow plunger-barrel body as described above adapted to contain a first component, and a syringe barrel configured to contain a second component. When assembled, the first plunger is slidably disposed within the hollow plunger-barrel body, and the plunger-barrel body is slidably disposed within the syringe barrel. The two components are initially separated by the rupturable membrane.