摘要:
A method is provided for developing an architecture model for a system-of-systems (SoS) that includes n system levels L1 . . . Ln, each of which includes at least one component of the SoS. For at least i>1, each system level Li includes at least one component of level Li-1. The method includes developing an architecture model for at least one level of the SoS. For at least i>1, the level Li-1 architecture model can be developed by developing a functional architecture model for level Li-1, and thereafter transforming the level Li-1 functional architecture model into a physical architecture model for level Li-1. The functional architecture model includes a functional and a logical structure for level Li-1. And as such, the functional architecture model is developed based upon a concurrent functional and logical decomposition of a functional architecture model developed for level Li.
摘要:
A flow status monitoring method is disclosed for a gravity flow metering system employing a metering chamber separated by a movable diaphragm into two compartments, each with a valved inlet and valved outlet. The system alternately opens pairs of valves on opposite sides of the diaphragm at preselected time intervals to deliver a fixed increment of fluid. Each preselected interval is divided into a series of discrete sub-intervals, and flow monitoring information is generated by displaying a a discrete indicator representative of the sub-interval in which movement of the diaphragm across the chamber is completed.
摘要:
A method is provided for developing an architecture model for a system-of-systems (SoS) that includes n system levels L1 . . . Ln, each of which includes at least one component of the SoS. For at least i>1, each system level Li includes at least one component of level Li-1. The method includes developing an architecture model for at least one level of the SoS. For at least i>1, the level Li-1 architecture model can be developed by developing a functional architecture model for level Li-1 and thereafter transforming the level Li-1 functional architecture model into a physical architecture model for level Li-1. The functional architecture model includes a functional and a logical structure for level Li-1. And as such, the functional architecture model is developed based upon a concurrent functional and logical decomposition of a functional architecture model developed for level Li.
摘要:
A catheter insertion device utilizing a catheter wound inside a two-piece generally cylindrical dispenser and extending outwardly into a slotted needle secured to an outlet from the dispenser; a stiffener comprising a closely-wound wire helix which surrounds a central straight wire is positioned inside the catheter; the dispenser is composed of two relatively rotatable parts, one a relatively flat base having a slot communicating with the slotted needle, the other a receptacle having an inwardly-facing wall which engages the catheter; the receptacle is releasably and rotatably held to the base by a central spindle extending upwardly from the base member through a hole in the top of the receptacle; a flexible feed guide extends from the base adjacent the dispenser outlet and guides the catheter toward the outlet; the guide is engageable with a stop to positively prevent further rotation of the receptacle at a predetermined point when the proximal end of the catheter nears the outlet; the dispenser spindle is split into yieldable fingers at its outer end and provided with a circumferential detent which engages the receptacle; a cooperating release button positioned atop the spindle may be pressed to urge the fingers of the spindle together and assist in releasing the receptacle from the spindle detent after insertion.
摘要:
A method is provided for developing an architecture model for a system-of-systems (SoS) that includes n system levels L1 . . . Ln, each of which includes at least one component of the SoS. For at least i>1, each system level Li includes at least one component of level Li-1. The method includes developing an architecture model for at least one level of the SoS. For at least i>1, the level Li-1 architecture model can be developed by developing a functional architecture model for level Li-1, and thereafter transforming the level Li-1 functional architecture model into a physical architecture model for level Li-1. The functional architecture model includes a functional and a logical structure for level Li-1. And as such, the functional architecture model is developed based upon a concurrent functional and logical decomposition of a functional architecture model developed for level Li.
摘要翻译:提供了一种开发用于系统系统(SoS)的架构模型的方法,其包括n个系统级L 1。 。 。 其中每一个包括SoS的至少一个分量。 对于至少i> 1,每个系统级L i i包括级别L i-1的至少一个组件。 该方法包括开发至少一个级别的SoS的架构模型。 对于至少i> 1,可以通过开发用于级别L i-1的功能体系结构模型来开发级别L i-1架构模型,然后转换级别 L i-1功能体系结构模型转换成L L i-1级的物理架构模型。 功能架构模型包括用于级别L i-1的功能和逻辑结构。 因此,功能体系结构模型是基于为L级开发的功能架构模型的并发功能和逻辑分解开发的。
摘要:
An intravenous administration set assembly (10) is disclosed which is capable of introducing fluid from a plurality of sources of intravenous fluids into a patient and which allows the various sources of fluid to be easily attached and detected from the assembly without the necessity for intravening safety steps, such as purging the system, and yet without any possibility of air or bacteria being introduced through the system into the patient. An air-eliminating filter (32) is attached to a manifold formed of fittings (26) which are connected through inlet adapters (28) to the sources of intravenous fluid. The air-eliminating filter (32) ensures that air or bacteria introduced into the assembly (10) through attaching or detaching sources to the assembly does not pass to the patient and also ensures that a head pressure is maintained relative to the venous pressure of the patient to prevent a back flow of blood from the patient into the assembly. Check valves are provided in each of the inlet adapters (28) attached to the manifold fittings (26) to prevent back flow from any one of the sources of fluid into another one of the sources to thus prevent contamination of the sources.