Abstract:
A fiber-optic sensor includes an optical fiber coil and a laser source optically coupled to the coil. Light from the source is transmitted to the coil as a first optical signal and a second optical signal counter-propagating through the coil. The optical paths of the first optical signal and the second optical signal are substantially reciprocal with one another and the first optical signal and the second optical signal are combined together after counter-propagating through the coil to generate a third optical signal. The laser source is frequency-modulated or can have a coherence length longer than a length of the coil.
Abstract:
A fiber-optic sensor includes an optical fiber coil and a laser source optically coupled to the coil. Light from the source is transmitted to the coil as a first signal propagating along the coil in a first direction and a second signal propagating along the coil in a second direction opposite to the first direction. The optical paths of the first signal and the second signal are substantially reciprocal with one another and the first signal and the second signal are combined together after propagating through the coil to generate a third signal. The laser source is frequency-modulated or can have a coherence length longer than a length of the coil.
Abstract:
An optical sensor includes a directional coupler comprising at least a first port, a second port, and a third port. The first port is in optical communication with the second port and with the third port such that a first optical signal received by the first port is split into a second optical signal that propagates to the second port and a third optical signal that propagates to the third port. The optical sensor further includes a photonic bandgap fiber having a hollow core and an inner cladding generally surrounding the core. The photonic bandgap fiber is in optical communication with the second port and with the third port. The second optical signal and the third optical signal counterpropagate through the photonic bandgap fiber and return to the third port and the second port, respectively. The photonic bandgap fiber has a phase thermal constant S less than 8 parts-per-million per degree Celsius.
Abstract:
There is provided a narrow linewidth semiconductor laser device comprising a semiconductor laser and a low noise current source operatively connected to the laser for supplying current thereto, the current source being particularly adapted to prevent a significant degradation of the frequency noise spectrum of the laser. The laser device also has an optical frequency discriminator providing an error signal representative of the optical frequency of the laser. The laser device also has control means having a feedback network for providing a frequency feedback signal. The feedback network is particularly adapted to the frequency noise spectrum of the frequency discriminator, the frequency noise spectrum of the laser and the tuning response of the laser. The control means is also provided with sequencing means for allowing to automatically enable frequency locking of the laser on the frequency reference of the optical frequency discriminator. The laser device is provided with an enclosure for enclosing the frequency discriminator to isolate the frequency discriminator from external perturbations. Such an arrangement is particularly advantageous since it allows to provide an improved sub-kHz linewidth and a high coherence while being compact, lightweight and highly reliable. Moreover, the narrow linewidth semiconductor laser device of the present invention can advantageously be automatically operated.