Abstract:
A method for modeling a vehicle, includes: receiving an image that includes a vehicle; and constructing a three-dimensional (3D) model of the vehicle, wherein the 3D model is constructed by: (a) taking a predetermined set of base shapes that are extracted from a subset of vehicles; (b) multiplying each of the base shapes by a parameter; (c) adding the resultant of each multiplication to form a vector that represents the vehicle's shape; (d) fitting the vector to the vehicle in the image; and (e) repeating steps (a)-(d) by modifying the parameters until a difference between a fit vector and the vehicle in the image is minimized.
Abstract:
A method and system for video-based encroachment detection are provided, the method including receiving first and second images, modeling a background from the first image, subtracting the background from the second image to provide a detection map, calibrating the size of an object from the pixel level, integrating a projection of the object with the detection map using dynamic programming, and detecting the object in a region if the projection matches that region of the detection map; and the system including a processor, a background modeling unit coupled with the processor for modeling a background from the first image and subtracting the background from the second image to provide a detection map, and a dynamic programming unit coupled with the processor for calibrating the size of an object from the pixel level, integrating a projection of the object with the detection map, and detecting the object in a region if the projection matches that region of the detection map.
Abstract:
A method for modeling a vehicle, includes: receiving an image that includes a vehicle; and constructing a three-dimensional (3D) model of the vehicle, wherein the 3D model is constructed by: (a) taking a predetermined set of base shapes that are extracted from a subset of vehicles; (b) multiplying each of the base shapes by a parameter; (c) adding the resultant of each multiplication to form a vector that represents the vehicle's shape; (d) fitting the vector to the vehicle in the image; and (e) repeating steps (a)-(d) by modifying the parameters until a difference between a fit vector and the vehicle in the image is minimized.
Abstract:
The present invention comprises using error propagation for building feature spaces with variable uncertainty and using variable-bandwidth mean shift for the analysis of such spaces, to provide peak detection and space partitioning. The invention applies these techniques to construct and analyze Hough spaces for line and geometrical shape detection, as well as to detect objects that are represented by peaks in the Hough space. This invention can be further used for background modeling by taking into account the uncertainty of the transformed image color and uncertainty of the motion flow. Furthermore, the invention can be used to segment video data in invariant spaces, by propagating the uncertainty from the original space and using the variable-bandwidth mean shift to detect peaks. The invention can be used in a variety of applications such as medical, surveillance, monitoring, automotive, augmented reality, and inspection.
Abstract:
An imaging system (110) for imaging a scene with a detector array (104) having an array of imaging elements is provided. The imaging system (110) includes an image estimation module (202) for generating a plurality estimates of uncorrupted images based upon a plurality of noisy images generated by the detector array (104). The imaging system (110) further includes a parameter determination module (204) for determining one or more nonuniformity correction parameters based upon the estimates of uncorrupted images.
Abstract:
The present invention relates to a method for visually detecting and tracking an object through a space. The method chooses modules for a restricting a search function within the space to regions with a high probability of significant change, the search function operating on images supplied by a camera. The method also derives statistical models for errors, including quantifying an indexing step performed by an indexing module, and tuning system parameters. Further the method applies a likelihood model for candidate hypothesis evaluation and object parameters estimation for locating the object.
Abstract:
A system and method for automatic scale selection in real-time image and video processing and computer vision applications. In one aspect, a non-parametric variable bandwidth mean shift technique, which is based on adaptive estimation of a normalized density gradient, is used for detecting one or more modes in the underlying data and clustering the underlying data. In another aspect, a data-driven bandwidth (or scale) selection technique is provided for the variable bandwidth mean shift method, which estimates for each data point the covariance matrix that is the most stable across a plurality of scales. The methods can be used for detecting modes and clustering data for various types of data such as image data, video data speech data, handwriting data, etc.
Abstract:
The present invention relates to a method for visually detecting and tracking an object through a space. The method chooses modules for a restricting a search function within the space to regions with a high probability of significant change, the search function operating on images supplied by a camera. The method also derives statistical models for errors, including quantifying an indexing step performed by an indexing module, and tuning system parameters. Further the method applies a likelihood model for candidate hypothesis evaluation and object parameters estimation for locating the object.
Abstract:
A method for detecting events in a video sequence includes providing a video sequence, sampling the video sequence at regular intervals to form a series of snapshots of the sequence, measuring a similarity of each snapshot, measuring a similarity change between successive pairs of snapshots, wherein if a similarity change magnitude is greater than a predetermined threshold, a change event has been detected, verifying the change event to exclude a false positive, and completing the processing of the snapshot incorporating the verified change event.
Abstract:
The present invention comprises using error propagation for building feature spaces with variable uncertainty and using variable-bandwidth mean shift for the analysis of such spaces, to provide peak detection and space partitioning. The invention applies these techniques to construct and analyze Hough spaces for line and geometrical shape detection, as well as to detect objects that are represented by peaks in the Hough space. This invention can be further used for background modeling by taking into account the uncertainty of the transformed image color and uncertainty of the motion flow. Furthermore, the invention can be used to segment video data in invariant spaces, by propagating the uncertainty from the original space and using the variable-bandwidth mean shift to detect peaks. The invention can be used in a variety of applications such as medical, surveillance, monitoring, automotive, augmented reality, and inspection.