Abstract:
A robust network telemetry repeater system exploits the repeater structure of data propagation and transmission and reception bi-directionality to increase network robustness. For example, multiple perceived receive attempts are created with no additional overhead. The system can be configured whereby nodes “hear” the transmissions of both adjacent and non-adjacent nodes forming implicit acknowledgement (“Acks”), and originating nodes can retransmit until implicit acknowledgments (“Acks”) are “heard,” indicating a successful link relay. Implicit acknowledgment can be applied to bidirectional networks, and bidirectional action can enable all nodes in the network to know the status of all other nodes.
Abstract:
Methods, systems, and techniques for controlling voltage applied across a piezoelectric stack of a downhole acoustic transmitter. At least one of the temperature of the stack and the compressive stress applied to the stack is monitored. At least one of the temperature of the stack and the compressive stress applied to the stack is compared to a temperature threshold and a stress threshold, respectively. When the stack signal is an alternating voltage signal and when at least one of the temperature of the stack and the compressive stress applied to the stack respectively exceeds the temperature threshold and the stress threshold, the stack signal is modified such that a negative polarity portion of the stack signal has a maximum magnitude less than a magnitude of a negative polarity limit.
Abstract:
An acoustic receiver for use on a drill string includes a housing attachable to the drill string; a first sensor mounted within the housing for measuring a first parameter at a first location on the drill string and for generating a first parameter signal representative of the first parameter; a second sensor mounted within the housing for measuring a second parameter at a second location on the drill string and for generating a second parameter signal representative of the second parameter; and a controller mounted within the housing and communicatively coupled to the first and second sensors. The magnitudes of the first and second parameters vary in proportion to magnitude of the acoustic wave and the first and second parameters have a quadrature phase relationship. The controller is configured to combine the first and second parameter signals to determine the magnitude of the acoustic wave.
Abstract:
A robust network telemetry repeater system exploits the repeater structure of data propagation and transmission and reception bi-directionality to increase network robustness. For example, multiple perceived receive attempts are created with no additional overhead. The system can be configured whereby nodes “hear” the transmissions of both adjacent and non-adjacent nodes forming implicit acknowledgement (“Acks”), and originating nodes can retransmit until implicit acknowledgments (“Acks”) are “heard,” indicating a successful link relay. Implicit acknowledgment can be applied to bidirectional networks, and bidirectional action can enable all nodes in the network to know the status of all other nodes.
Abstract:
A downhole repeater network timing system for a drilling rig including a drillstring extending subsurface downwardly from a surface wellhead. The system includes a node located at the drillstring lower end and including a sensor adapted for providing a signal data set output corresponding to downhole drilling conditions. Multiple nodes are located downhole between the Bottom Hole Assembly (BHA) and the wellhead and are associated with the drillstring. The nodes are adapted for receiving and transmitting the signals. The timing control system is adapted for controlling all times within a timeframe according to pre-configured constants known to all nodes. A downhole low rate linear repeater network timing method uses the system.
Abstract:
A downhole repeater network timing system for a drilling rig including a drillstring extending subsurface downwardly from a surface wellhead. The system includes a node located at the drillstring lower end and including a sensor adapted for providing a signal data set output corresponding to downhole drilling conditions. Multiple nodes are located downhole between the Bottom Hole Assembly (BHA) and the wellhead and are associated with the drillstring. The nodes are adapted for receiving and transmitting the signals. The timing control system is adapted for controlling all times within a timeframe according to pre-configured constants known to all nodes. A downhole low rate linear repeater network timing method uses the system.
Abstract:
A downhole repeater network timing system for a drilling rig including a drillstring extending subsurface downwardly from a surface wellhead. The system includes a node located at the drillstring lower end and including a sensor adapted for providing a signal data set output corresponding to downhole drilling conditions. Multiple nodes are located downhole between the Bottom Hole Assembly (BHA) and the wellhead and are associated with the drillstring. The nodes are adapted for receiving and transmitting the signals. The timing control system is adapted for controlling all times within a timeframe according to pre-configured constants known to all nodes. A downhole low rate linear repeater network timing method uses the system.
Abstract:
A robust network telemetry repeater system exploits the repeater structure of data propagation and transmission and reception bi-directionality to increase network robustness. For example, multiple perceived receive attempts are created with no additional overhead. The system can be configured whereby nodes “hear” the transmissions of both adjacent and non-adjacent nodes forming implicit acknowledgement (“Acks”), and originating nodes can retransmit until implicit acknowledgments (“Acks”) are “heard,” indicating a successful link relay. Implicit acknowledgment can be applied to bidirectional networks, and bidirectional action can enable all nodes in the network to know the status of all other nodes.
Abstract:
An acoustic transmitter for transmitting an acoustic signal through a downhole medium includes a voltage source; a composite load; and switching circuitry that applies voltage from the voltage source across the composite load in response to a drive signal. The composite load includes charge control circuitry, in the form of at least one inductor, connected electrically in series with a piezoelectric transducer that may be electrically modeled as a capacitor.
Abstract:
A stacked-ring, slow-wave acoustic telemetry isolation system and method for use with tubular assemblies such as drillpipe or production tubing comprising an acoustic wave transmitter, the acoustic isolator behaving such that a “down” wave propagated toward the isolator is reflected back substantially in phase with an “up” wave propagated from the acoustic wave source away from the isolator. The acoustic isolator is similarly effective in reflecting “up” propagating waves originating from below the isolator, hence further protecting the acoustic wave source from possible deleterious interference. It causes substantially all of the emitted wave energy to travel in a chosen direction along the drill pipe, thus aiding the efficiency of acoustic telemetry said pipe.